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A discrete version of the inverse scattering problem in one dimension is considered. While the
natural formulation is somewhat different from the three-dimensional problem with spherical
symmetry, the equations of solution turn out to be almost identical. Indeed, in the continuous limit
(Schrédinger equation) even the slight differences disappear. Two equivalent treatments
corresponding to considering incidence from left or right are given. For actual computation a

combination of the two seems most efficient.

. INTRODUCTION

Previously! we have discussed discrete versions of
the inverse scattering problem corresponding to a
spherically symmetric potential. Here the purely one-
dimensional discrete problem is discussed. There are
two reasons: First there are illuminating differences
between this case and the earlier treated one. Second,
the problem is somewhat intermediate between that for
the three-dimensional isotropic and anistropic potentials,

Explicitly we consider the following equation:

Hot,n + 1) + ¢(,n — 1)} = xg(n) p(r,n),

—w<ln<®, (L1)
For simplicity (only) we assume that
gn)=1, [n|>N. (1.2)
If we put
A=1—EA2, g(n)=e1®?

and pass to the limit

A—-0 nA-x=0,
we obtain the one-dimensional Schrédinger equation with
potential g(x).

Our problem is the following: If A = cos ¢, with
— 7 =< 6 < 7,then Eq. (I. 1) has the solutions <1>t which
for |n|—> ®© behave so that

n->+9  ¢,(0,n) > S, (0)eimd,
¢_(8,n) — e"in6 + § (9)e*ind,
n—o —©, ¢, (0,n) = ein® + S,_(g)e”in0,

¢_(8,n) - S__(0)e"ino, (I.3)
The question is to determine g(n) given the 2 X 2 mat-
rix S. As in other inverse scattering problems we will
find that the solution is unique provided we are given

the positions of the bound states? and their normaliza-
tion constants.

In Sec.Il some needed properties of solutions of Eq.
(I.1) are summarized. The explicit solution to the prob-
lem is then obtained in Sec.Ill. An example is described
in Sec.IV and the continuous (Schrodinger) limit is given
in Sec. V.

. SOME PROPERTIES

From Eq. (1. 1) it follows that if ¢ (1, ¢ @ are two
solutions then the Wronskian
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WoW, ¢ @]
=HoW(,n + 1) p@1,n) — $D(,0) 9D A,n + 1}
is independent of #. Then from the asymptotic forms

given by Eq. (I. 3) we conclude that (for A = c0s9)S.,=S_.
and the matrix S is unitary, i.e.,

[S..12 +[S,_]2 = and S, 8% +S,.8* =0.

Two functions related to ¢, are defined so that

fi > eting
n—>100

Clearly
¢+ = S#-v f+
and

6. =S_.f . (Ir. 1)

More generally we define f, so: Let z = e?9, then for
all z we define f,(z,n) so that

lim f,(z,n) = 2" .,

n—> 100

(1. 2)

Bound states [i.e.square summable solutions of Eq.
(I. 1)] clearly correspond to those values z; where
lz;| < 1 and f{e,n) ~ f_(z;,n). From Green' s type
1dent1t1es one readily concludes that z, are real, simple
and occur in * pairs. Comparing with the asymptotic
behavior given by Eq. (I. 3) we see these z; are poles of
all elements of S. Further3

f,,(zi,n):aif_(zi,n), (I1. 3)
where
o, = lim S,- (@) = lim S__(z). (I1. 4)
27z, s++ (Z) 2=z, S—+(Z)

Again from a Green's type identity we conclude that

5 gmf2em=L=_az z5] o @s
n=-o M dz S,.l, 25

and

Nad 1 z,[d 1

> gn)f2@m) = — = —-‘[ ] (L. 6)
7 =—00 Niz dz S++ aoz;

Finally we note from Eq. (I. 1) written in the forms

f+(z’n - 1) = (Z + l/z)g(n)f,,(z,n) _f-v(z,” + 1)
and

foz,m + 1) = (z + 1/2)g(2)f(z,n) — f{e,n — 1)  (IL.7)
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that we have representations of the form

f_,(z,ﬂ) = Z} K,,(n,m)zm,

and "
foz,n)= 2 K_(m,m)z"m, (II. 8)
m=-co
where K, are independent of z. Moreover,
lim K,(n,m)=06(n,m)= lim K_(rn,m) (I1.9)
n—>o0 7~ -00
and
g(n) = K+(n e 1:” - 1)/K+(nrn)
=K_(n+ 1,n+ 1)/K (n,n). (IL. 10)

il. SOLUTION

Given the matrix S for z on the unit circle, the z; and
the M? (or N?) we now want to construct g(n).

Notice that for |z | = 1, f, and f* are two linearly
independent solutions of Eq. (I.1). Hence we can write

¢.=S._f. =Af. + Bf¥, lz|=1.

From the constancy of the Wronskian and the asymptotic
behaviors we obtain B = 1,A = S_, .

“S._f=f¥+S..f., lel=1, (T1I. 1)

Let us insert the representations of Eq.(II. 8), Then
o0 oo

2 K.n,m)zm +5S., 23 K,(n,m)zm

m=n m=n

=8__ wK_(n,m)z"", |z |=1. (1. 2)

e
Let us multiply this equation by (27¢)1 2¢-1 and integrate
around the unit circle. Since

@m)1 § zim1dz = 6(1,m),

the first term on the left becomes K. (n, I).
If we define y ((m, I) by

ySom,1) = § 5., zm*ildz, (IL. 3)
27t

the second term is

5 Ku(n,m)yim,1).

m=n

For the right-hand side we need

Im,l) = @2mi)t § z0"m1S _dz. (IIL 4)

Since S__ is analytic except for simple poles at the
bound states z; we can evaluate this by residues. Thus

I= IO + Ib.s. ’
where I, is the contribution of the possible pole at z = 0
and I, are the bound state contribution.

We find

Io(m) l) =S__ (0) G(I)m)!
while

Ib‘s.(m’ )= E zil_m_l

i

AN
dz S,. 22
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Hence Eq. (III. 2) is transformed to

o0 o0

20 Kdn,m)o(m,l) + 25 K.n,m)y (m,l)
m=n m=n

=50 5 K.(n,m)o(,m)

m=~00

d 1
+ Z} zf(a o

3

_1 n
> 2 K.(n,m)z;m,
Z=zi m=—00

but (1L, 5)
D K.(nm)zm = f(z,n) = - file,,n)
= a}z— :‘i:u K,(n,m)zi"’.

Thus the second term on the right of Eq. (IIl. 5) is
o0
— 2 z;M? 2 K.(n,m)zl".
m=n

Transcribing this term to the left of Eq. (III. 5) we find
for 7 > n the Marchenko-type equation

Ku(n, ) + 33 Ku(n,m)y.m, ) =0,

m=n

(I 6)

where

yom, )= 2 M2zI™ + (2mi)1 § S..zm*ildz, (WL
i

Let us remark that in the present context, where S_, is
analytic except for simple poles at the bound states z,,
this formula has a simple interpretation, namely:

yom.l) = (2i)1 ¢’ S, zm*i1dz, (I 8)

(Here 9( ’ means merely omit bound state contributions.)
For I =n we get the condition
K, (n,n) + :i:)n K. (n,m)y, (m,n) = S__(0)K_ (n,n).( )
The Eqs. (III. 6,9) can be simplified if we define '
k. (n,l) =K, (n,l)/K.(n,n).

Then they are

Kn, 1) +y(n, )+ 27 k. (m,m)y,(m,)=0, [>n
m=nl (I1IL. 10)
and o
1+ 9y (n,m)+ 27 kn,m)y.(m,n)
m=n+l
=S._(0)K_(n,n)/K.(n,n). (OL11)

To have a determinate set of equations, we still must
eliminate K_(n,n). This is accomplished so: From the
definitions we have

W[f.,f-]=(z—z1)/25._(2)
while, using our representations of Eq. (II. 8), we have

Wi f 1= 37 @ + DI @n) — file,m) ] (en + D}
= 2 X K(n+1,mE_(n,m')zmm

m=n+1l wm’'=-o©

(1. 12)

o0 ntl
- 2 Z) K+(n)m)K—(n + lym’)zm—m'-
m=n m'=—00 (III. 13)

Evaluating (274)1 ¢§ W[f,,f.]dz with the two expressions
of Eq. (II1. 12 and 13) yields the identity
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1/8._(0) =K,(n,n)K_(n + 1,n + 1)
Thus
S__(OK_(n,n)=1/K_(n — 1,n — 1)

(independent of n).

and Eq. (III. 11) is

o

1+y,.(n,m)+ 25 k,(n,m)y,(m,n)

m-n+l

=1/K,(n,n)K.,n —1,n — 1), (I.14)

The procedure to determine g(n) is then the following:
From S_,,M?%,and 2z, we calculate y,. The k, are found
by solving Eq. (IIl. 10). Then K, (n,n) is determined
from Eq. (III. 14) with the boundary condition

lim K,(n,n) =1,
n—>Q

The g(n) are given by Eq. (II. 10).

Before considering an example it is convenient to
note that we could just as well have worked with the
K_. The analogous results are

Let

y(m, ) =23 N2z;¢*m 4 (2i)1 § S, _zt"mldg,
i (1. 15)

K. (n’ )=K. (n, l)/K- (n)n)

Then our equations to determine g(»z) are

n-1
k(n,) +y.(n, )+ 22 k. (n,m)y-(m,) =0, 1< n,
meTee (II1. 16)
n-1
14y (n,n) + 20 Kk (n,m)y_(m,n)
=1/K_(n + 1,2 + )K_(n,n), (IIL.17)
lim K_(n,m)=1 and g(n)
noee =K_(n + 1,n + 1)/K_(n,n). (I1I. 18)

IV. AN EXAMPLE
Suppose no bound states and
S.-(8) = S_,(0) = {e2i® —1/[(2 —g)e2i® —g]} — 1.

(Iv.1)
(The condition that there be no bound states is g > 1.)

Then
yo(m,l) = (2151 § S_,zm*ildz

and

Yelm, ) =0, m+1>0.
Then

kK,(n,l)=0, I +n>0,

and we have for n > 0
1=1/K. (n,n)K,(n — 1,n — 1),
We conclude [since K ,(©,©) = 1] that
K,(n,n) =1,

n = 0.

When n = 0 we have as the only relevant nonzero
v.(m, 1) that for m = I = 0. Then

7.(0,0) =S_,(0) = (1/g) — 1.
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Equation (IIL. 14) becomes

1/g = 1/K+ (0’ 0)K+ (“ 1"— 1);

~K(—1,-1)=g.

Then we have

g(n)=1, n=l,
and

g0)=K,(-1,-1)/K,(0,0) =g/1=g. (Iv.2)

When » = — 1, we need in addition to

7+ 1,-1) =711 =9,0,0=1/g—1
the quantity

r.(=1,—1)=1/g.
Equation (III. 10) then gives

K(-1,1) =—y.(-1,1)

and Eq. (I1I. 14) gives

1+ 7+(_ 1’—1) i £ (ly_ 1)2 1/K+ (_ 11_ 1)K+(—' 2’_ 2)

= 1/g2.

Thus

K. (-2-2)=¢g
and

g-1)=1

Proceeding in this way, we would obtain

K.(—n,—n)=g, n =1,
and

gny=1, n<-1,

An alternate, more efficient calculation, is to use Eqgs.
(II1. 16,17, 18) to show this result.
V. THE CONTINUOUS LIMIT

Let us consider the “+” form of our equations in the
limit A — 0-so that Eq. (I.1) passes over into the one-
dimensional Schrddinger. For simplicity omit bound
states. If we put z = ¢¢8, the expression for y, becomes

yolm, 1) = (1/21) [7 S_.(6)eitm*Deds,
-1
From
cosf =A=1-—EAZ

(v.1)

we obtain
6=+ Ak, where k=vV2E .
Thus

Y+ (m’l) = AY+’(m1 l)’
v = (1/21) [7 S, (k)ei(maria) k gk,

Let

x=mA, y=I1A,

Then Eq. (L. 10) becomes

o0

Ko(x,9) + Ay) (x,9) + A 25 )

m=n

K+(xyz)')’+’ (z,y) = 0’
y>x.
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Clearly ¥, = Ak and for small A this becomes

k1Y) + i) + [T kI OvIEy) =0, y> .
* (V.2)
The condition of Eq. (I1l. 14) becomes when the limit
of Eq.(V.2) for y — x is inserted becomes

1
K, (n,m)K,(n — 1,0 — 1)

1— Ak/(6,x) = (V.3)

In principle we should express K, (r — 1,n — 1) in the
form

K —1n— 1) S K, (6,0 - A L K@)

before passing to the limit A — 0, However, we will
find K.(x,x) = 1 + O(a). Hence to an adequate approxi-
mation the right side of (V.3) can be written as K;2(x,x).

Then
K@,y) =1+ (a/2)ki(x,x).

For the potential ¢(x) we use our formulas

[

g(n)=e1(02® =14 qx)A2=K,(n — 1,n — 1)/K (n,n)

~ A2 4
. ~ 1*—-—5‘ EX— Ky (x,x),
i.e., d
qx) = — 3 ax k) (x,x). (V.4)
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We note also that the integral representation for f,
becomes

f+ (kyx) = etkx + f:o K/ (x,y)e“” dy’

Vi. CONCLUSION

It has been found that while the initial formulation of
the inverse scattering problem is somewhat different
from that for a spherically symmetric problem,l the
resulting equations for the solution are almost identical.
One difference is that the condition of Eq, (IIl. 14) in-
volves 1/K(n,n)K{n — 1,n — 1) instead of 1/K2(n,n).
However, after passage to the continuous limit even this
difference disappears.

*Support in part by the U.S. Air Force under Grant No. 722187,
K. M. Case and M. Kac, J. Math. Phys. 14, 594 (1973).
K. M. Case, J. Math. Phys. 14, 916 (1973);see also I. Kay and H. E.
Moses, Nuovo Cimento 10, 3 (1956); and L. D, Faddeev, Tr. Mat. Inst.
Steklov 73, 314 (1964) {English transl., Am. Math. Soc. Transl., Ser.
2 65,139 (1964)].
2By ““bound states” we mean square summable solutions of Eq. (I.1).
An explicit definition of the “normalization constants” is given in
Sec. IL
3Clearly conditions need to be prescribed so that the element of §
can be continued into the unit circle. However, with our present strong
limitations the elements of S are all rational functions of z.
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Geodesics along the axis of symmetry in Carter’s extension of the Kerr metric are divided into two
types by the sign of the constant of the motion associated with the timelike Killing vector, and it is
shown that this also divides them as to their place of origin on the manifold, which contains
infinitely many copies of two different spaces which are flat at » = + o. It is shown that geodesics
cannot cross from one space to the other, but that a trajectory with properly applied acceleration

can Cross over.

Gravitational collapse of a material body into a black
hole has been the center of much study recently because
of its possible explanation of various astronomical
energy sources that have been observed. As a first
attempt to understand the features of gravitational
collapse, knowledge of what might happen to matter fall-
ing into an already existing black hole is certainly im-
portant. The solution to the field equations found by Kerr
almost certainly describes the space exterior to a
rotating black hole; however, no interior metric has yet
been found. The actual causal and topological properties
of the space inside the first horizon may differ from that
predicted by the Kerr metric, but we consider it a useful
first approximation. We use Carter'sl.2 analytic exten-
sion, which is geodesically complete, of Kerr's original
metric, Generally, the geodesics in the four-dimensional
case are quite complicated, so, for simplification, only
geodesics on the axis of symmetry will be considered
at this time,

In Boyer and Lindquist's3 “Schwarzschild-like” co-
ordinates, hereafter referred to as B&L coordinates, the
Kerr metric can be written as?

ds? = p2(dr2/A + dO2) + (r2 + a2) sin29d¢p?2 — dt?
+ (2m7r /p?)(dt — a sin28d¢)2; (1)

when restricted to the axis of symmetry Eq. (1) becomes
ds? = p2/Adr?2 — A/p2? dt2, (2)

where p2 =72 + a2 cos26, a is the angular momentum
per unit mass, A =72 + a2 — 2m», and m is the mass.
Carter's extension of the axis of symmetry is created
from the repeated use of two null metrics. We define
one coordinate system (r,u) with null metric

ds2 = 2drdu — A/p2du? (32)

and another similar coordinate system (»,w) with null
metric

ds? = 2drdw — A/p2dw?,
where

u=3F0)+1

(3b)

w=3F@)—t,
dF/dr = 2p2/ 4,

such that F(r) = & + K,  In |r —», | + K-1In|r — 7|,
K, =Y%02+ a)lr, —r,),

while 7, = m & (m2 — a2)1/2 are the roots of A = 0,
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We note that the function F(r) is separately monotonic
in each of the three regions

Ly, <r <o,
My <r<r,, (5
II: — w0 <r<7r_.

Each of these coordinate systems is analytic and exten-
sible to a manifold larger than the one upon which the
B&L coordinates were defined, Where these two mani-
folds overlap, one may introduce full null coordinates
(w,u) with the metric

ds2 = A/p2dudw. (6)

This overlap region will be one of the three regions in
Eq. (5); therefore, given u,w and a region one may
uniquely determine ». We may then introduce, following
Carter, a new coordinate system (£, {) by

+ h{w) = tan(y — &), (7

where k(z) must be a first-order monotone increasing

function such that h(z) = O(¢ *+*) as z » ¥ ©. The com-
plete manifold will then consist of an infinite sequence
of (r,u) patches labeled (—, ) and, superimposed on
this, a similar sequence of (r,w) patches labeled (7, —)
running perpendicularly to the (r,u) sequence. Labeling
each intersection by (7, m), the manifold consists of those
intersections where |z —m| < 1. If n = m is odd [even]
then it is a II [IT] region; if # is even (odd) and < (>) m,
then it is a I (I’) region; if # is even (odd) and > (<)m
then it is a II (III’) region. The choice in sign in the
definition of £ and ¥ is determined by which of the
regions I, I’, II, ete., is under consideration. Given an
(n,m), the sign is + h(u) [— k(x)] for m odd [even], and
equivalently for » with + h(w).5

+ h(u) = tan(y + &),

From the null metric and the definition of w, the equa-
tions of motion are

v’ =+ (E2— A/p2)V/2,
u’ = p2(r' + E)/A, (8)
w' = p3(r’ —E)/a,

where E is the constant of the motion associated with the
timelike Killing vector, in B&L coordinates, and the
prime denotes the total derivative with respect to 7, the
proper time, The geodesics in terms of ¢ and § are not
as useful as those in null coordinates, but the sign of ¢/
can be used to divide the geodesics into four classes. A
short calculation shows that

sgny’ = sgn(x E), (92)

Copyright © 1974 by the American Institute of Physics 147
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if the region is of type I or III; + E is used for unprimed
regions and — E for primed regions. For a region of

type II
sgny’ = sgn(+7’), (9b)

+ 7’ if it is barred and — 7’ if it is unbarred.

The four classes of geodesics which may be obtained
from Eqgs. (9) are distinguished by their starting region,
primed or unprimed, and the sign of . When two par-
ticles are in the same region with their respective con-
stants, E, equal in magnitude but opposite in sign, then
they are on the same geodesic; the difference is the
direction of increasing proper time: toward greater {
for one and lesser y for the other. So for a particle
starting in a I region, we need look only at those with
increasing ¥. Geodesics in a primed region with de-
creasing ¢ will violate causality when they intersect
with unprimed geodesics with increasing . Therefore
only those geodesics with E > 0 in an unprimed region
and E < 0 in a primed region will be discussed further,
The constant of the motion E associated with the time-
like Killing vector, is the total energy per unit mass, as
measured by a stationary observer at infinity, in the
unprimed region I. However, in the primed region I’,
the B&L coordinate ¢ tends to minus infinity as one
approaches the outer horizon. Therefore, we must insist
that a stationary observer at infinity in I’ has df/dt =
— 1, so that his proper time agrees in direction-with that
of all other geodesic coordinate systems, in particular,
those which eventually enter II. So in the I region, the
constant E (which is negative for geodesics in I') is the
negative of the energy per unit mass of a particle as
measured by a stationary observer at infinity. This
leaves two essentially different geodesics, one starting
in a primed region and one in an unprimed region, both
with ¢’ > 0. It is not possible for a geodesic to start as
one type and end up as another, As an example, we con-
sider a particle which would begin at I and go through
II into a I’ region. A geodesic in a I region with ' >
0 has E > 0 and, to approach 7, , must have »’ < 0. Since
the perihelion point,»’ = 0, cannot be in the II region,r’
remains negative while in the II region, so u’ remains
finite; but, to cross from II to II’, »’ must go to infinity.
A similar argument holds for the return trip, with»’ > 0
and the coordinate w.

It is, however, possible for a particle in II (or II) to be
accelerated onto a geodesic which will carry it into the
opposite type of region from whence it came;e.g., from
I to IIl’. To see this in detail we may consider a particle
with £ < 0, on a geodesic from I' to III’, with 4-velocity
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(?’,%’), and another particle with E > 0, on a geodesic
from I to III, with 4-velocity (v, u’); the two paths will
cross in the II region, We examine the momentum and
energy of the primed geodesic as measured by an
observer on the other. We transform to geodesic co-
ordinates by first transforming to a locally nonrotating
reference frame (LNRF)$é from B&L coordinates, and
then to the geodesic coordinates by a pure Lorentz
transformation, giving us

ar w =7 ar
= ’ (10
ar —u’ E au
where 7 and 7 are the local geodesic coordinates. (We

insist that & /dr > 0;i.e., they align their axes in the
same way.)

The 4-momentum of the primed particle as measured
by our observer, as their world lines cross in the I
region, is then

pl = Efi’ — Eu’ = p2(E¥’ — Er')/A, (112)
pt = p2(EE —7'r')/a > 0, (11b)
with v = pl/pt = (EF' — Er")/(EE — 7'r"). (11c)

(These results hold also for the intersection of geodesics
in a I region., The difference is in the change of sign of
7’ when moving from a ITI to a I region, which changes
the sign of pl with respect to the previous case, but
leaves p4 with the same sign.)

Since £ < 0,v > 0 in II and v< 0 in II, while |o| =< 1,
so that by imparting this velocity to some previously
comoving object our observer may put the object onto a
primed geodesic. As should be expected, | »| approaches
1 at both horizons. Additionally, |v| is a minimum at
r = |al. It is therefore clear that there is some kind of
“access” to this “other space,” even though of course
the observer going there will never return.

*Partially supported by an NSF Traineeship.

1B. Carter, Phys. Rev. 141, 1242 (1966).

2B. Carter, Phys. Rev. 174, 1559 (1968).

3R. Boyer and R. Lindquist, J. Math. Phys. 8, 265 (1967). In this
reference, a is the negative of the angular momentum per unit mass.

*We use units such that ¢ = | = G. Furthermore, we only consider the
case la | < m, since | @ | > m makes the problem trivial.

SA more complete description, and sketch, of the manifold will be
found in Ref. 1.

SA LNRF has di* — di? = ds?. See J. M. Bardeen, Astrophys. J. 178,
347 (1972).
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Multiple time scales perturbation theory is applied to the weakly nonlinear $* quantum field theory
model. The multiple time scales perturbation equations are solved to lowest order, leading to the
removal of secular and quasisecular terms from the standard perturbative solution. This removal
occurs in a manner similar to that developed in a previous quasisecular perturbative approach which
focused on small energy denominators. The multiple time scales approach provides a better rationale
for the quasisecular perturbation theory, as well as providing a systematic method which can be
extended to higher orders in the coupling constant. It leads to the natural introduction of a
first-order renormalized Hamiltonian, which is a well-defined self-adjoint operator on a’certain
Hilbert space of physical states. This renormalized Hamiltonian is a direct sum of Schrdinger
Hamiltonians on N -particle subspaces, which describe the interactions of pairs of particles via a

nonlocal potential.

1. INTRODUCTION

The primary purpose of this work is to investigate the
method of multiple time scales! in the context of
quantum field theory. In recent years general perturba-
tive techniques have been developed for uniformizing
perturbation expansions.2 The general uniformizing
method which is called the method of extension? intro-
duces an extension of the domain of the independent
variable, which is the time variable (f) in this work. The
variable ¢ is replaced by a large number of formally in-
dependent variables ¢,,¢,,,, ***, which at the end of the
calculation are taken to depend upon £, thus defining the
“physical line” 2 in the extended domain. Physicists
have long used the idea of time scales intuitively, for
example to separate strong interaction phenomena
operating on a time scale of 10-23 gec from weak inter-
actions operating on a time scale of 10710 sec. The
introduction of multiple variables achieves this separa-
tion in a systematic manner.

The secondary purpose of this paper is to place a
previously developed perturbation theory into the
general and systematic context of the multiple time
scales method. The perturbation theory was called
quasisecular perturbation theory3 and it differs from
standard perturbation theory through the treatment of
those terms which in the standard approach involve
small or zero energy denominators. Such terms give
rise to secular behavior4 in the standard approach; the
terms are not periodic and blow up at large times, It
has been shown that such terms are physically associ-
ated with persistent effects which occur over long times
and lead to mass renormalization and the binding to-
gether of particles,3

In the quasisecular perturbative approach the secular
terms (vanishing energy denominators) and quasisecular
terms (small energy denominators) were modified by a
heuristic technique of mass and amplitude renormaliza-
tion. The presence of small denominators is in conflict
with the basic rationale of perturbation theory, that
higher-order corrections be small, In quasisecular
perturbation theory the conflict was resolved. Neverthe-
less, the method adopted for resolving this problem had
a somewhat arbitrary character since it was based
upon techniques which have proven useful in the classical
theory of nonlinear oscillations for periodic systems
with a small number of degress of freedom.5

In this paper we examine a particular case of the
method of extension known as the method of multiple
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linear time scales which has been successfully applied
to systems with a large number of degrees of freedom.1
In this case the physical line in the extended domain is
given by £, = f,£, = At,t, = A% and so on, where A is a
small parameter in the model problem. The technique
has been applied to nonperiodic processes such as the
irreversible approach to equilibrium in gases.! For
certain aspects of kinetic theory the linear time scales
approach proves inadequate in removing all singularities
and a more general approach using multiple time and
space scales has to be introduced.® However, in this
paper we restrict ourselves to the linear time scales
approach since it is sufficiently general to handle the
secuiarities of interest,3

The model treated is the ¢4 model of quantum field
theory? with the equation of motion
(O + m2)¢(t, x) = r: (¢, x)3:, (1.1)
where O is the d’Alembert operator 92/9¢2 — v2 and
: : denotes normal ordering. With the assumption of
periodic boundary conditions for a finite, cubical box,
the formal Hamiltonian associated with Eq.(1.1) is

H=H,+H,, (1.2)
where
Hq =E“’1a:°‘l (1. 3)
l

in the notation of Sec. 2 (a;" ereates a bare particle of
momentum / and energy w ,). The interaction Hamiltonian
is

HI = — (IGL)‘IMZ) 61+k,q+r(wlwkwqw7)-1/2: (a;‘ + a-l)
qr
X (af + o )(a, + aX)a, + a*):. (1.4)

In Sec.2 Eq.(1.1) is transformed into a more con-
venient form using the Fourier amplitudes a,. The
assumption of the linear time scales method is that a
solution can be found in the form

(L, %) = O, AL, N22, -5 x) + APOE, AL A2E, - < -5 X)

+ .-, (1.5)
where ¢,Af,A2¢, - - - are treated as independent variables
ty,t1,ty, - - during the calculations, and at the end
identified with z,A¢, 224, ..., thus defining the physical
line in the extended domain.2 The approximation of
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Eq.(1.5) is made uniform on the successive time scales
ty, %, ¢z during the stages of the calculation by eliminat-
ing any secular or quasisecular terms.

The calculation is carried out to first order in X in
Secs. 3 and 4. It is found that the results of quasisecular
perturbation theory3 are recovered in this order. In
the course of the calculation it is found to be natural to
introduce a first-order renormalized Hamiltonian which
is a well-defined self-adjoint operator on the usual Fock
space. In addition it is a particularly simple operator in
that it commutes with the particle number operator and
thus can be written as the direct sum of Schrddinger
type Hamiltonians on N particle subspaces (N= 0,1, 2,

*+). The dynamical information carried by the first
order field of Eq.(1.5) is shown to be unitarily equi-
valent to the dynamics of the renormalized Hamiltonian
in Sec. 4. However, the unitary transformation does not
remain in Fock space in the cases of two and three space
dimensions,® The connection with the strange represen-
tations of the canonical commutation relations has been
discussed previously.8

The above results bear some similarities to the
renormalization group approach of Wilson? in which
multiple space scales are introduced to describe larger
and larger clusters of “partons”. An effective Lagran~
gian is obtained which describes the interaction of
“particles” considered as clusters of partons. However
in the Wilson approach the multiple scales are not re-
lated via a small parameter and the method is not based
on a perturbative expansion, as it is a strong coupling
method.

2. THE COUPLED NONLINEAR FIELD AMPLITUDES

The model chosen has been described previously3.8; it
is the ¢4 model of quantum field theory.? The equation
of motion for the case of one space dimension is written

as
(22——8—2-+m2>¢=)\:¢3: (2.1)
at2  0x?

and the real field ¢ is studied on the interval — 3L =<

x =< 3L with periodic boundary conditions (% = ¢ = 1).
The results obtained are valid for two and three space
dimensions as well, with the appropriate natural nota-
tional changes. It is convenient however to express most
equations in the one-dimensional form to avoid vector
subscripts,

By using the Fourier decomposition
¢(ty x) = L—1/2 E al(t)eilx,
1

where ] = 27nLlandn=0,+ 1,2 2, * -+, the field equa-
tions transform into an infinite array of nonlinearly
coupled equations3:

(2.2)

|+ wia, =AL1 ) ta,a,0,:8,,,,.,, (2.3)

kpr
where w? = m2 + 12, d, = d?a, /dt?, and § denotes the
Kronecker function, It is possible to transform these
equations into a set of first-order differential equations
via the substitution

A = (0, /2)V2[a,(t) + iw;la, )], (2.4)
which leads to the equations
A +iw, A= (n\/4L)g)r By aper (W, Wy, w,)1/2
X1 (A, + AR)A, + AN NA, + AL (2.5)
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via the use of the reality cond1t10ns o(t,x) = ¢ *(t,x) and
¢(t x) = ¢*(t x), which imply a,(8)* = a_,(t) and a (t)*

a_,(1). Here * indicates a formal algebraic ad]omt oper-
ation which is abstractly defined as an antiliner involu-~
tion.

The initial conditions for Eq. (2.1) at £ = 0 are taken
to be the canonical commutation relations

[¢(07x), 4.7(0,3))] = lé(x _y),
[¢(0,x), ¢ (0,5 )] = [¢(0,%), $(0,¥)] = 0,

which lead to the equivalent commutation relations

(2.6a)

(2. 6b)

[4,(0), A2(0)] = 8,55 (2.7a)
[A4(0), 4,(0)] = [4,0)*, A4,(0)*] = 0. (2. 7b)
These are the initial conditions for Eq. (2.5). As the

final transformation it is convenient to extract the un-
perturbed time dependence, a,(f) = Al(t)e“"lt , because
then

. -1/2 i
o (1) = (z)\/4L)l§r 8, ks pir(W; W w,w,) /2 gt

—iwkt

x : (e .+ eiuktafk)(e-iwﬁtap + ei“’Pta_*P)
X (e “"”ta + e“"”ta ) (2. 8)
sothat @, = 0if A = 0.

The essence of the linear multiple time scales
method is the assumption that a solution of the system
of Eqgs. (2. 8) can be found in the form?!

o (t) = a0ty t e, 0) +AaMtg, b, 1,0 0) + (,2 0
where ¢, = ¢ and the new variables are given by ¢, = ¢,
t, = A2¢, and so on. It is shown in the next section how
the extra freedom which arises from the introduction of
the new variables (method of extension) can be used to
eliminate secular and quasisecular terms from the
standard perturbative solution of Eq. (2.8). The variable
to describes processes occurring on a fast time scale
whose unit interval is m~1, whereas ¢, ¢,, etc. describe
processes occurring on progressively slower time
scales involving the cumulative persistent effects of the
interactions in higher order. Strictly speaking the
slower time scales should be related to ¢, by the dimen-
sionless coupling constant (which is |A Im 2 in the case
of one space dimension); however, no difficulties are
caused by the simpler assumptions t, = AL, ete,

The first term o 1(0) is chosen to satisfy the initial
conditions of Eq. (2. 7) and the subsequent terms are
taken to vanish at ¢ = 0 [e.g., @{1(0,0,--+) = 0].

3. PERTURBATIVE EQUATIONS

The first two equations of the perturbative hierarchy
obtained by substituting Eq. (2. 9) into Eq. (2. 8) are

ce0) =0, (3.1)

2
PRI UTLT

0

Lostyy e

Z/4L) E 61 k+p¢r
-1/2 “‘"l 0. (e—

0 2
. al(l)( )+ o az(O)(to» t,000)

1

iwktoa’:()) " e“"k OQ(O)*)

— *
(33 ) “rtoa® + ¢rlog @ty
(3.2)

X (w wkwpw,,)

X (e zw t azo) + ei‘”pto
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Equation (3. 1) implies that o(® depends only on the slow
variables ¢, {,, etc. Among the many terms on the right-
hand side of Eq. (3. 2) there are some which do not vary
with £, or which vary very slowly. For example, if w, +
w, — w, — w, = 0,then the term a!P*a(® ¢ has a co-
efficient which is constant in /,. This [eads to secular
growth for the corresponding contribution to oz(ll) in the
standard perturbation theory, [i.e., a contribution like
(it/4L)5, popry a@*a a0 (w W w ,w ,)-1/2], which be-
comes large for long times, violating the perturbation
theory rationale that successive terms should be uniformly
small. On the other hand, if £ = w, + w, — w, — w, is of
order (Am2)m (where Am~2 is the dimensionless coupl-
ing constant for one space dimension), then the corres-
ponding contribution to @{ in standard perturbation
theory involves the small energy denominator E-1 (of
order mA~1) and this part of Aa (D is of zeroth order in
A. This violates the expectation that all zeroth-order
terms be contained in a{®.

For the consistency of the perturbative expansion of
Eq.(2.9) we demand that Aa{? be uniformly smaller (for
all times) than ozl(O) by one power of the small parameter
am~2. This consistency condition determines (3/0¢,)a(®
in Eq. (3. 2) which must be chosen to cancel out all
potentially secular and quasisecular terms which appear
on the right-hand side of Eq. (3. 2). The potentially
quasisecular terms are the ones which oscillate at fre-
quencies ¢ %' guch that |E| < |A|m-1.

Assuming that the above cancellation has occurred,
we are left with the equation

9 W _ . ! -1/2
a-t;a‘ = (2/4L)k?y Oy par (0,0, w,w,)

: * *
X [¢' Wit Rt p ey Yo g0 * (DT (O)

; ‘o - * *

+ 3! Wit Wy meplo g O a9 0@

+ 3ei(“’z+‘”k_‘”p"‘-’r)to oz_(,?)* a;o) a:O)

+ ei(wl —uk—wp—wr)toa,:O)a;m :0) ) (3.3)

where Z)' indicates that the sum is restricted in such

a way that all the terms on the right-hand side of Eq.
(3.3) oscillate at frequencies ¢ ‘%% satisfying |E| >

|x] m~1. The solution of Eq. (3. 3) gives the behavior of
oV on the fast time scale characterized by ¢,. This
part of the problem can be solved explicitly in a straight-
forward manner because a(® on the right-hand side of
Eq.(3.3) is constant on the fast time scale ¢.

It should be noted that the consistency condition which
requires the determination of ozl(O)(tl) is where the real
difficulty lies, The cancellation condition for potentially
quasisecular terms is formulated in Eq. (4. 1) in which
the frequencies ¢’ fo appearing on the right hand side
satisfy the condition |E| < |[x|m1, Equation (4.1) is
difficult to solve because a{® on the right-hand side
also varies with ¢, and therefore the equations form a
complicated nonlinear system which does not admit an
exact solution.

The solution of Eq.(4.1) can be regarded as the solu-
tion of a Heisenberg equation of motion for a new
Hamiltonian, which is referred to as the renormalized
Hamiltonian. In the following this terminology is justi-
fied. A prime advantage of such an approach is that it is
possible to focus upon a solution valid in certain small
subspaces of Hilbert space (e.g., one and two particle
subspaces) rather than finding the global solution of
Eq. (4.1) for the entire Hilbert space.
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4. THE RENORMALIZED HAMILTONIAN

The only potentially quasisecular terms in Eq. (3. 2)
are those of the form a©*q©q©® gince the only way
the sum of four + w,'s can be near zero is when two
have plus signs and two have minus signs. This leads
to the simpler looking consistency condition

, -1
%al(o)(tl) = (31/%)5 Dy (w,w, wpwr) /2
! ilwrw,~w -w )t (0)* () )
Xe A e o (t]_)ap (tl)ar (tl)‘ (4' 1)
The quasisecular restriction on the sum in Eq.(4.1) has
been met by introducing the function D,, »» Which is 1if
both I+ k=p +7 and |w, + wk—wp—w,,ls Al m-1
are satisfied, and 0 otherwise, Since the frequency in
the exponential is of order A, it may be written as
e @rvrep vl ghich has a zeroth-order frequency,
and thus Eq. (4.1) involves only the slow time scale ¢{,,
so that the compatibility condition?

8 3a® 9 a0
Ay oty oty Aty

is satisfied. If the substitutions ¢, = At and b@®

e it aZ(O)(M) are made in Eq. (4. 1), the result is seen to
be the system of Heisenberg equations for a new
Hamiltonian

Hp = ;wl b, — (3x/8L)l§ Dy (0,0, wpwr)'l/z
r

X b'byb,b, (4.2)

provided that the commutation relations
[64), b, ()] = [, (1), b5 ()] = 0, (4. 3a)
[0, 8 )] =6, (4.3b)

are valid at all times. From Eq.(2.7) they are seen to
be valid at the initial time. A simple calculation based
on Eq.(4.1) which is given in Appendix A shows that all
the higher order time derivatives of the commutators
in Eq. (4. 3) vanish at the initial time. The assumption
that the commutation relations are valid at all times is
clearly consistent since the time evolution operator
associated with the Hermitian operator H, of Eq. (4. 2)
is unitary [b,(¢) = "% (0)e *“r‘]. This implies the

operators ozl(O)(tl) satisfy the canonical commutation re-
lations at all times.

The Hamiltonian H, has several pleasant features.
First it commutes with the number operator

N=23bb,.
!

Such a result suggests the Hamiltonian might be defined
on a Hilbert space containing a unique (normalized)
vacuum state |0) with the property N|0) = 0, which
implies &,|0) = O for all /. The other states in the
Hilbert space are in the closure of the subspace of
states on the form (P(bl:‘, -, bz:;)l 0), where @ is a poly-

nomial in z variables. This Hilbert space is just the
usual Fock space which is constructed via the field
operators at the initial time, The Hamiltonian leaves
invariant subspaces of a definite particle number, and
thus it is a direct sum of Hamiltonians over the Hilbert
spaces of definite particle number N, N = 0 (no particle
state or vacuum), N= 1, N= 2, and so on, which lead
to standard Schrodinger equations on each such
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subspace. The commutation rules imply Bose statistics
for the particles, It is remarkable that the consistency
condition leads to a system of Schriodinger equations.

The Hamiltonian on the N-particle subspace may be
written as

N
HXV) =§1 w(pi) +

where in the momentum representation for the symmetric
wave functions ¥ = ¥(p,, p,, ..., py), the kinetic energy
w(p;) = (p# + m2)1/2 ig'multiplicative and V,; is a non-
local potential acting between the pair of pariicles
labeled by (7, j). For example

(Vio®¥)(bys oo - 5by)
== (37\/41') ;532 Dﬁxl’zklkz (wawﬁzwklwkz)-. V2

X W(kyskoyP3yeeesby)e

Evidently V,, is symmetric. In Appendix B it is proved
that V;, is a bounded operator whose bound is indepen-
dent of L, the size of the box. It follows that the total
interaction potential in Eq. (4. 4) is a bounded, symmetric
operator and therefore H{M) is a self-adjoint operator
whose domain is the same as the domain of the kinetic
energy

N
T =37 w(p).
i=1

The one-particle states of the Hamiltonian H{D lie at
the unperturbed energy w(p) = (p2 + m2)1/2, The two
particle states undergo scattering due to the interaction
Vi5. For x> 0 the potential V,, has negative matrix
elements and corresponds to an attractive interaction.
In previous work it was shown that a bound two-particle
state occurs for arbitrarily weak A > 0 for the cases of
one and two space dimensions, but not for the case of
three,10

5. THE FIRST-ORDER HEISENBERG FIELD

The first-order solution of the field equation (2.1) re-
quires finding o as the solution of Eq. (3. 3) on the fast
time scale Z;,. The solution which satisfies the pre-
scribed zero initial condition of Sec.2 is

-1/2

N
> v,
i(j:l 1

(4.4)

(4.5)

(1)
Q,

-1
= (4L) g} 0,0 b per (W W 0,0,)
(4 .

N [ei(“’z*wk*“’p*wr)to -1
(w, + w, + w, + w,)

©* (0)* (O)*
a, o, o

STt ok (% (o)
ak -p r

W
{(w, + w, + w, — )

e““"i"“’k'“”p""v)to -1

Wt W, — W, —w,)

O* O {0

+31-D 2 o a,

lkpv)(

ilw, ~wy-w, ~w, )
P TWpTYy, TW Iy
. £ 1

o o o
al o, a, ]+ y,(¢1).
(0= 0y =y —w) (5.1)
Note that o §1) depends on #, as well as on #,; through the
{, dependence of &‘® and a®*, The factor 1 —D,;,, in
the third term takes care of the nonsecular restriction
on the sum in Eq, (3. 3); it prevents the denominator of
this term from becoming smaller than [A|{m-1, This is
the only potentially dangerous denominator in Eq. (5. 1).
The last term v,(¢,) is determined by eliminating quasi-
secular terms from the third member of the hierarchy
which was started in Eq. (3. 1). The left-hand side of the
third member of the hierarchy involves
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D@4 2 40 42 L0
3ty

3ty aty
and therefore

..?_ a(l)
ot

is determined by the consistency condition to eliminate
quasisecular terms on the fast ({,) time scale, whereas

?
2 4@
9, ¢

is chosen to eliminate quasisecular terms on the slow (¢,)
time scale. The initial condition on y,(¢,) is 4,(0) = 0.

The complete first-order Fourier amplitude of the
field ¢(¢,x) is

dz(t) - (zwz)—l/z[(afw_*_ Aaz(l))e-wlt%- (a_(?)* + Aa_(ll)*)ewlt].

(5.2)
In Eq. (5. 2) the independent variable appears as a{® =
a0t and D = a{)(¢,rf). The expression Eq. (5. 2)
is a solution of Eq. (2.1) to terms of O(A2) uniformly
over the time interval |#| <m |A|-! provided that y, in
Eq.(5.1) has been chosen to eliminate quasisecular
terms which appear in second order, as discussed above.
We defer the details of such a calculation to a later
paper.

In previous work a heuristic method was devised for
obtaining dynamical information from the first-order
Heisenberg field,10 The method involved extracting all
terms in Eq. (5. 2) which oscillate like ¢ *“z* or close to
it, The result can be written as

at) = 2wy YP[Ue + U + win)],  (5.3)
where W,(f) has the property that its Fourier transform

vanishes in intervals of width 2|/x| m~1 centered at
+ w,, Then

U, =8, + (32/8w, L) ) (0,0, w,w,) /2D, ., a0* a0 ©
rkp

(5. 4)

and 8, comes from the {, independent terms in Eq. (5.1),

Bt,) = 0@ — (7\/4L))§ 8 1p, por (0,05 w‘pw,,)'l/z
r .

X [(w, + w + w, + 0,)taf0%QP*O*

+ 3w, + W+ W, — w,) a0 aP*a @

+ 3(1 — Dy N, + Wy — w, — 0, ) 1af0*a©@ o @

+ (0, — w,— w, — w,)1aP @ a ] + ry,(¢).

(5.5)

In Eq. (5.4) the last term arises from a‘P* which has an

oscillation close to ¢ '“o when the conjugate of the
second term in Eq. (5. 1) satisfies |0, +w, —w, —w, |
=[xl m™1 (i.e., Dy, = 1). Approximating such fre-
quencies by e #I% jg valid on the fast time scale |¢| <
m~1 on which v,(¢,) can be replaced by zero. Actually
since our solution is accurate to first order in A, the
last term in Eq.(5.4) can be dropped as well since the
D function restricts the summation and introduces a
factor proportional to A,

Strictly speaking Eqgs, (5.4) and (5.5) are valid only if
the ¢, dependence of a® is neglected so that the fre-
quency support of terms in Eq.{5.3) is given by the {,
dependence. This approximation is quite accurate be-
cause the frequency shifts implied by the £, dependence
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are given by H, and are quite small. Detailed calcula-
tions19 give frequency shifts proportional to A2 for one
space dimension, and much smaller for two and three
space dimensions.

A Hilbert space of physical states was constructed in
previous work.10 The vacuum state is taken to be the
(unique) state €, annihilated by all the positive frequency
amplitudes £, and its energy is taken as zero. One
particle states of momentum k and energy w, are of the
form B'®,. On the subspace of two-particle states
generated by the vectors 8,8, ®, the Hamiltonian
satisfies10

HB'By 2o = (w, + w)B By 8
— (3W/4L) 2 (ww, w,w,)" /2D, BB %y, (5.6)
ar

By comparison with Eqgs. (4. 4) and (4. 5) this result is
seen to be identical with the action of the renormalized
Hamiltonian H{) on its two-particle subspace. This
suggests there exists an isomorphism between the
dynamical information contained in the first-order (re-
normalized) field of Eq. (5.2) and the renormalized
Hamiltonian of Sec. 2.

Such an isomorphism is established generally via a
formally unitary clothing transformation.® We may write
B,(0) = e*Sa je~*S (5.7
where both sides are taken at ¢ = 0, and the transforma-
tion is evaluated by expanding, 8, = o, + A[S, o,] + O(A2).
The formally anti-Hermitian operator S is given by8

S = (4L)1 E 5klp+qw(wkwpwqw1)—1/2
kpar
*
q
+ 3w, + @, + w, + wr)‘l(a_’"kap* aq*a: — o000,
1 _ -1/
+ 3(8L) kgraka,p_qw(l kaqr)(wkwﬁwqw‘f) 2

— — -1 * *
X (w, + w, — w, w, ) la, aoa,,

X [(w, — w, — 0, — w,) e o,00, —alereSa,)

(5. 8)

where the operators a, a™ are all at # = 0, If we define
the time dependent g by the equation

Bl(t)e_””lt = eiftg(0)e~il! where e it is the unitary
time evolution operator associated with the (formal)
-Hamiltonian H then

B (et = exsew'tale—w'ze-xs’ (5.9)
where

H = He'S = H + A[H,, 5] + 0(A2). (5.10)
From the relation [Hy, ¢,] = — w, a, (which follows from

the commutation relations at the initial time) we see
that

H+ AH,, S} =H, = H' + 0(22), (5. 11)
where Hp is the expression of Eq. (4, 2) with b, replaced
by ,(0) = ¢,(0(0), Substituting Eq. (5. 10) in Eq. (5.9),
we get to within terms of order A2
B,(t) = e*Sa fO(at)e s (5.12)
and thus 8 l(t)e-i“’lt [which is a solution of the Heisenberg
equation in terms of the original Hamiltonian H of Eq,
(1.2)] is related by a formal unitary transformation to
a 10)(At)e_“"l', which is the solution of the Heisenberg
equation in terms of the renormalized Hamiltonian H, .
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Since we can interpret §,(¢) as the renormalized (posi-
tive frequency) field amplitude which annihilates a
“physical particle”,10 we see that the renormalized
Hamiltonian H, describes the interaction of the physical
particles in the physical Hilbert space (through the
clothing transformation).

The properties of the clothing transformation have
been investigated previously.8 In the case of one space
dimension it is a unitary transformation which acts with~
in the usual Fock space. In the cases of two and three
space dimensions it is interpreted as an “improper”
unitary transformation!! (i.e., its domain is Fock space
and its range a new Hilbert space, the space of physical
states, which is outside the Fock space).
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APPENDIX A

In Sec. 4 an operator b,(¢) is defined which satisfies the
equation of motion

b,(t) = — iw,b (t) + (311/41,)5 Dypy
X (W, wow,w, )" 1/20} (£)b,(1)b, (). (A1)

The commutation relations of Eq, (2.7) imply at the
initial time (¢ = 0) that

[6,(0), 8,(0)] = [57(0), b5 (0)] = 0,
[b,(O), bZ(O)] = 8.
We show that all the time derivatives of these commuta-

tors must vanish at the initial time, The relations Eq.
(A2) and H as defined by Eq. (4.2) imply that

(A2a)

(A2b)

l;l = i[Havbl]! (A3a)

b = i{Hg, 0] (A3Db)

holds at £ = 0, and by Leibniz' rule for derivatives of
products and for commutators of products,

4

dt ®b,b%) = i[Hpg, @],

(A4)

holds*at t = 0, where @ is any polynomial in the various
b=0>b",

The time derivative of the commutator of Eq, (A2b) for

instance is given by
oy v¥ + [5,,%0*| =ifm,,b1,6%+ i[b, (H,.0*
d_t 13 0p 1k i[[Hp,b,],05] + [}, [Hy, 5;]]
= i[Hy, [6,,b;]], (A5)

where the last equality follows from the Jacobi identity.
From Eq. (A2b) the right-hand side vanishes at¢ = 0.
In a similar manner from Eq. (A4) at the initial time we
have

4z
di?

[bl’b:]= iz[HR’[HR’[bl!b:]]] (A8)

which again vanishes. A proof by induction shows all
higher derivatives vanish at 1 = 0, A similar proof
applies to the other commutators in Eq. (A2).

These considerations suggest strongly that the basic
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commutation rules of Eq. (A2) are valid at all times, Of
course, this is not a strict proof as there are nonanalytic
functions like ¢"1/¢? which vanishes at ¢ = 0 and all of
whose derivatives vanish at t = 0,

APPENDIX B

The nonlocal potential acting between particles 1 and
2 was given in Sec, 4 in the N particle momentum repre-
sentation by Eq, (4. 5). From the Cauchy—-Schwarz in-
equality it follows that

|(Via®)(By, + 21012 = (31/4L)2 (5 wil wilD, ,, m)

172
X <kzk;2 w;in_lePleklkaI‘I’(kl’kZ!pS’""pN)Iz)"
1

B1

We consider the case of three space dimensions, whe(re )
the boundedness is the most difficult to establish, Then

g)kzwkllwkipplpzklkz = BL, (B2)
where B is some (volume independent) constant, because
for p,,p, fixed the momentum conserving Kronecker
delta restricts the sum to one variable, and the number
of terms in the sum is bounded by BLw? (where L is the
volume of the box), since in three dimensions the density
of states goes as k2 ~ w? at high energies. Thus the
squared norm of the vector V,,¥ satisfies

v, %2 < LB’

.‘1 '1 L 2
XPI-?PN k:‘%z “r %, DPlpzkx”zl Y(ky, ko, 3o« os ) |2 (BI)
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where B’ is another constant, Doing the sum over p,p,
first in Eq. (B3), we obtain via Eq. (B2)

lv,,¥ll2<B” 2, T

kiky Pyec. by

= B"|¥|2,

[W(ky, kg Pgyeen )2
(B4)

where B” is another volume-~independent constant. Hence
V12 is a bounded operator.

It is amusing to note that V,, is not a bounded operator
in the case of four space dimensions,
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Reduction on the Lorentz subgroup of UIR’s of the
Poincaré group induced by a semisimple little group

E. Angelopoulos
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All UIR’s of the Poincaré group corresponding to nonzero mass are reduced on a Lorentz subgroup
by means of a unique formalism. The maximal differential domain of each UIR is proved to be a
nuclear space. The completeness relations (generalized matrix elements) are established between the
energy-orbital angular momentum—total angular momentum and one of its components—basis, and
the relativistic—orbital—total angular momentum and one of the components of t.a.m. basis.

INTRODUCTION

The unitary irreducible representations (UIR's) of the
universal covering of the Poincaré group, @, are of great
interest. Since Wigner,1 Bargman,? and Shirokov3 have
given the exhaustive list and explicit realizations of
them, many authors have given other realizations of
these UIR's or their tensor products, by a change of
basis which diagonalizes a set of commuting operators
corresponding to a definite choice of physical obser-
vables.476

Such problems often take the general form of the de-
composition of a representation on a subgroup, the
operators to diagonalize being closely related to such
a subgroup, and their spectra to the UIR's of that sub-
group.

Our purpose is to reduce UIR's of ®, induced either
by SU(2) or SU(I, I),on a Lorentz subgroup. This prob-
lem was first treated by Joos4 for the case of the so-
called physical representations. However, his method
can not easily be transposed to UIR's with negative
squared mass, and it is not very rigorous mathemati-
cally. Moreover, the UIR's corresponding to negative
mass square, besides their interest from the physical
point of view (they appear as irreducible components
‘in tensor products decomposition) present many ana-
logies with the positive-mass-square ones and can,
therefore, be studied simultaneously.

The method used here keeps a unique formalism for
positive and negative masses, trying to put in evidence
the structural similarities of SU(2) and SU(1, 1); an out-
line of it figures in a previous article? treating only the
zero spin case (the simplest) for both little groups.

Since the Lorentz group is noncompact, the operators
to be diagonalized are unbounded and their eigenvectors
are outside the Hilbert space of the representation. To
solve the reduction problem, one must introduce a Guel-
fand triplet of test functions and distributions. Then,
provided the corresponding spaces are nuclear (and in
our case they are), one can effect the reduction in the
form of completeness relations defined by a measure
on the spectrum of the diagonalized operators.

In Sec.I the problem is stated and the different nota-
tions introduced; a discrete parameter x = + 1 distin-
guishes the two little groups, and the expression of US,
the UIR to be reduced, is given by means of the Wigner
operator 7,. In Sec.IB we put in evidence some proper-
ties of the Lorentz Lie Algebra [ and its enveloping
algebra E(1), such as ladder operators for the eigen-
values of the angular momentum, and the discrete and
continuous parameters of the spectra of Casimirs of .
The reduction of US on the maximal compact subgroup
SU(2) is effected in Sec.II and in Sec. ITI the relevant
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infinitesimal operators are given. In Sec.IV we prove
that the maximal differential domain of US is a nuclear
space.

The discrete reduction of U° is effected in Sec. V,by
using the properties established in Sec.IB;in Sec. VI
the diagonalization is effected along the continuous
spectrum; this step is carried out by introducing deriva-
tions of noninteger order for some series of UIR's.
The completeness relations are established in Sec. VIII.
In Sec. IX the principal results are outlined and remarks
on open or similar problems are made. In the Appendix
are given the explicit expression as well as the renor-
malization of the eigenfunctions of the Casimirs.

|. STATEMENT OF THE PROBLEM AND DIFFERENT
NOTATIONS

A. Parametrization of the UIR’s of @

Timelike and spacelike UIR’s of the universal cover-
ing group ® of the Poincaré group @ are well known.!
They are induced representations, characterized by an
orbit and a UIR of the little group. The orbit is, for
timelike representations, an upper or lower sheet of
hyperboloid in the momentum space, denoted Q*,, or
Q;,; for spacelike ones, the orbit is an one-sheet hyper-
boloid, Q;,,. The little groups are SU(2) and SU(1, 1),
respectively.

To obtain a unifying formalism for the two cases, one
must have a convenient parametrization for the orbits.
We shall thus put, for (p;,p) € Q€5 (M > 0):

p1 = 3 eM{e* + xe™*),
Py + by = 3 € M(e* — xe™*) sing ei®, I.1)
p3 =3 €eM(e* — xe™*) cosy,

where the polar angles ¢ € ]0,7[ and 6 € 0,27 [ para-
metrize the unit sphere S,. The discrete parameter x
takes the values x = + 1 in the SU(2) case, in which x is
a real positive number and € = + 1 (the choice of ¢ dis-
tinguishing the two sheets Q3,),and x = — 1 in the SU(1, 1)
case, where x is a real number and € can be taken equal
to 1. We shall write x € R, (withR,; =R*:R_; =R) for
convenience.

Remark 1: The above parametrization covers an
open dense set of each of the Q's;this is sufficient,
since we shall deal with square integrable functions
over the orbits.

Remark 2: In the case x = 1,the apex of Qj becomes
a singular point of the parametrizing space R" X S,;
therefore, one expects to find technical difficulties in the
form of boundary conditions.
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To express the invariant measure on an orbit, we in-
troduce the functions

p(P) = M1/2(p3 + pZ + p2)V/2 = S (e* — xe7*), (L.2)

o(p) = eM1py = 5 (e* + xe™*), (1.2
and we find, modulo a multiplicative constant:
dp(p) = p2dx{4a)™? singde df = p2dxrdu, (1.3)

where du denotes the invariant measure on the sphere
S, = U(IN\SU(2).

Now, let S be the inducing UIR of the little group and
XS its carrier (Hilbert) space;let p — 7, be a section
which assigns to every p the element of SL(2,C) de-
fined by

Ty = (c°5(¢/2>e<’*=‘6>/2 sin(g/2)e (~ioy2
» =
— sin{g /2)9(‘:*:‘.6)/2 cos{¢/2)e Cx-ig)2

x/2
= (e /20 )' “((P, 9)’
0 e *x/2

b being given by (I.1). Then, every element A € SL(2,C)
can be written A =y -7, for some p and some y which
belongs to the little group, the decomposition being unique
except for a null measured set.

The UIR of @ induced by S can then be written in a
canonical way, for {a,A) € @

(L.4)

US(a, Mf(p) = p(p) -[p(p - A)I? exp(ip,a¥) -

S(TPAT},. A)‘f(i’ * A); (I- 5)
where f is a square-integrable function on R, X S,, with
values in 3S; the Hilbert space of the representation
being X = 3S® L2 (Rx X 8,;dxdu). One obtains the res-
triction of US on SL(2,C) by putting a = 0 in (1. 5).

To close this survey, we shall briefly list the inducing
UIR's, by giving the expression of the Lie algebra opera-
tors of the little group G, (standing for SU(2) or SU(1,1)
according to values of x).

The Lie Algebra 3, has three generators,J%,J%,J,,
verifying the commu{‘ation relations
[7%,d8) = xJ5; 95, 3] = % 9%, 951 = J%, (1. 6)

and one Casimir operator, C* =J, + x[¢%)2 + ¢%)?].

TABLE 1.
X Series Range s Range n

1 A 1,2,3,...

1 B % % —~8,=8+1,...,8—1,8

, s By ews

1 O, 0 0
-1 A —hit ;=0 cees=1,0,1,...
-1 A! —~3+t ; O<t<}
-1 B_ —~1+it ; >0 R 7% A
-1 (o —3,-1,—-2,-32,... —-s,~s+1,...
-1 cr cees5—1,8
-1 o 0 L4
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The expression of these operators for a UIR are,on a
convenient basis |s,n):

C* Is,n) =— s(s + 1) |s,n),

Iy ls,n) =inls,n), €7

@i+ig¥)s,m) =23 Vx(sFn)stn + 1) -|s,n +1).
Corresponding ranges for s and z are given in Table L.
B. On the representations of the Lorentz Lie algebra !:
generalization of ladder operators
[ is generated by six infinitesimal generators, which

verify the commutation relations:

[J;-an]:‘ [Kj:Ki]zeiijlz’ [JisKj]:‘: Ei_,-kKk- (1.8)

The maximal compact subalgebra, 3u (2}, is generated
by the J's, its Casimir being @ = J% + JZ + J3.

The Casimir operators of the whole algebra are
Cy =ZKJd;,, C,=3x{EK?-J?).

Since Cy,C,,Q,J, form a maximal set of commuting
operators for the enveloping algebra E(1), every alge-
braic representation of E(1) can be written on a basis
of simultaneous eigenvectors of these operators. Putting
in evidence those of @ and J;, we have

Il j,my=im|j,m).
We want to introduce ladder operators @* for the

eigenvalues of Q, in a similar way as J, + iJ, are de-
fined for those of J, [see (1. 7)].

The expression of @* shall be j-dependent, since @'s
eigenvalues are quadratic on j. Thus @* shall not be
operators of E(1) on a strict sense; one can however
choose them to coincide with such operators, when res-
tricted on a j-dependent subspace.

In fact, let
Li=(+325)2K; F(J+ 3 £2)KJp, —KpJq) +d5-Cy.
(1.9
One can easily check that

QLil j,m)=— (= 1)(G+1+ 1)L 1j,m). (1.10)

Then let @* be defined by
Q"1 j,m) = (27 + 3)/2(2j + 1)'V/2(j + 1 + m)1/2
X (j+1—myY2L:|j,m),
Q 1j,m)=(2j— 1)V22j + 1)V2(j + myV/2(j — m) /2
x L;lj,m), if j = m?
Q—lj;ij>=0. (I‘ll:

The following relations then hold (we drop the non-
relevant index m)

[C]_’Qi] = [Czy Qt] = [J3y Qi] = 0: (I- 12

Qi) =[CZ+j2C, — (j—V2G+ D] 1), (1.13

Q@@ iy =[C2+ (j + 12C, — i + 12(j + 2] ”(x
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Now, if one imposes to the representation to be integ-
rable over the subalgebra 3u(2), j + m and j — » must
be positive integers,and j > 0;let then j; = minj. Then
Q| jg,m) = 0,and (I1.13) gives

[c% + j3C, — 3303 — 1] | §y) = 0. (1.14)

Con31dermg the invariant subspace generated by
@Y% - |i,),one can define on it a new operator D
(resp: D 3 if jo # O (resp: if j, = 0), given by iD= jg' C;
(resp. D2 = C, + 1). Combmmg these definitions, one
can write

Cy =ijoD, Cy=3ji+D2-1, (I.15)

So that (I.14) holds (keeping in mind that only D2 is
defined for j, = 0). Writing |jg;7) = @ 7° [ jo),
Egs. (1.13) become in the j, subspace:

Q Q| jgs 3) = (32 ~ j3)UD2 — j2) | jg3 1) (1.16)
Q Q" jg; i) =G+ 123302~ (§+1)2) ]y ).
(I.16%)

Combining these results, one gets the following ex-

pression for K, in this subspace:

. G+ 12— m2
K ; , = —_—
3ldoidym) ((2j+1)(2j+3)

+ m]o(]z +3J)1D [ jo;j,7n>

/2
) I.’Io:J+ 1, m)

j2 — m?2 1/2
) (52 —33D2 — )| jp;i—1,m).
((21 — 1)(2j + 1)) €.17)

Since 1 is generated by K4 and su (2),D (or D2 if
jo = 0) is enough to characterize the representation in
the j, subspace. To obtain a representation algebraically
irreducible, D must be a scalar, and the inverse is also
true, except for D2 = (j, + k) with & nonnegative integer.

We recall that the representations obtained by differ-
entiation of UIR's of SL(2,C) are given by D = if, 2 ]0
integer (or D2 = — £2, j, = 0) with £ € R, for the princi-
pal series;and by D = £, j, = 0, with 0 < g < 1 for the
supplementary series.8

Il. REDUCTION ON THE MAXIMAL COMPACT
SUBGROUP SU (2)

Using (1 5) we see that, if A € SU(2), the matrix
Y=T, AT *x is a diagonal unitary matrix, regardless to
the value of x;also ¢ and p are left mvarlant

But we can impose to S to be diagonal on element of
the form exp(tJ,),i.e:

S (ﬁ ;) | s,n) = B2"|S,m)for =1, C. (W.1)
Putting

f(p) =

we obtain for A € SU(2)

27 F,x,u)ls,n),

VS f(p) = (II. 2)

where

u'A:ﬁ'u’:(ﬁ C_)> u .
0 B

27 B2nF (x,u')|s,n),
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One can decompose F, in terms of the unitary charac-
ters YI™ of SU(2), since u can also be considered as an
element of SU(2). We recall that

Yim (B u - ) = B2 p2m Y™ ()
and one can write

F,(x,u) = F,(x,pu) = %

j.mk

B2k Fimlx) - Y™ (Bru)
(m.3)

since F, does not depend upon the choice of a represen-

tative in the class u € U(1)\ SU(2). For that reason the

function 27 F (x,u’) = p2* F,(x, B 1- uA) must depend

on the class of » alone, hence, putting A = 1, we obtain

n==F.

In view of these results, we can identify 3 to a sub-
space of L*(R, X SU(2); dxdw), by putting

eiv/2 0
w = u
G )

and

f(p) = F(x,w) = 2 ein¥ F,(x,u), 11.4)
n
p being parametrized by x and «, and range »n being res-

tricted by the representation S.
We can thus write for A € SU(2):

US(A)F (x,w) = F(x,w A)

- (z) Yia) F,{"(x)>' Yim@w) (L.5)
jom,n k

and we see that, for n,x,and j fixed, FJ™ (x) behaves as

a 2j + 1 line vector under the action of the UIR of SU(2)

characterized by j.

Since j + n must be positive integers, there are the
following restrictions on range j:

Series 0,,4,,A.: j=0,1,...
Series B, ti=5,3,...,
Series C’, C” t1j=—s,—-s+1,..

and ¥ decomposes to the infinite direct sum (in the
Hilbert space sense)
X = &
jtneN
with

Fi™(x) e Hilx) =

(H](x) ® C2i*1), (11. 6)

Lz(Rx;dx).

The infinitesimal operators of SU(2) are given by
(I.7) (with x = 1) by changing s to j and » to m.

We shall also give their differential expression on
functions of the form ei®¥3;. 5.m FImYI™(u), where
u e UANSU(2); u(e, 8) is glven by (1L 4),and one has

1 . . A 2 N
J, =—-—= =&=1J)=e“9(¢z—+cot — — in(sin )‘1>.
rTooyg 1T 2 g APY (sing))
[}
gy ==,
3 26’

Q = %— cot ¢ -; + (sing)2 (—a—;— — 2ni cosg ag —nz).

(0. 7)
Using these relations, writing in = 9/9y/, and choosing
convenient phase factors for Y™ one can establish the
following relations:
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cos¢ Y™ = a(j,m,n)Yi 1™ + [mn/(52 + j)]¥i™
+afj +1,mn)¥j't», (I.8)
[cose + sing(@/69)]Y] ™ = —j-a(j,m,n)Yi2.m
+ (j+ Delj+1,m,n)Y] 1™, (I.9)

e*t¥ sing Y) " =% V(j — 1% 0)/(j = n) a(j,m,n) Y]} ™
—[sn/iG+DINGF )i n+1)
Xyime(G+2+0)/(G+17%n)

(1L 10)

X a(j+1,mn)¥ii™,
where

a(j,m,n) = V(52 — m2)(j2 —n?)/jV452 - 1.

tl. THE INFINITESIMAL GENERATORS

The action of noncompact one-parameter groups on
the orbits being quite complicated, we shall make use
of the infinitesimal generators' expressions.
l

Ky 2 Fimyjm= D
J.m,n J.m,n

-+ ——
jm,n j(§+1)

+ 2

J.m,n

From this expression, we can get the ones of the Casi-
mir and ladder operators according to results of Sec.
1. B, One obtains, dropping the index m:

-5 35 { d L ;
(Q Fi), =Vij2 — n2 (Zi}- + jop 1) F}

o PR G CETEV CETD G

x Fi,, € Hf1 @), (1. 3)

@ Fi), = mTT)T:;ﬁ(j-; — G+ 1)ap-1)pg

+”§‘P'1Z3\/x(8¢n)(sd=n+ NGFa)ijsn+l)

x Fnjxl € Hﬁ*l (X), (III. 4)
. d ;
(—iCyFY), =n = Fj

+3p1 L aVxsFR) s+ DiF )G+ 1)

X Fl, € H] (x), (1. 5)

TABLE 1II.

Series Range j,

0,, 4, 0,1,...,8

B+ %: %9 cves 8

A, AL 0,1,...

B. +,4,...

ct, C* -8, ~85+1,...

" [ iF:m+zp12 REFMGEEn s DUF MG n+ 1) F

ati+ Lmm(£ -G+ Doprt)Fzm + 4ot B
X %
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Rotations are given by (II. 7) and translations by
P, =ip,,defined by (I.1). We shall put in evidence
only K4 among boosts.

Straightforward calculus gives for K;:

2 FImyimw) = 2 ng(x)fmcosgoY“"(w)

jom,n jom,n

-

jym.n

, 0
+ 25 p1F(x)™ sing dS [

Ky
op L Fx)Y,™(cosg + sing 2 /8¢) Y™ (w)

1oule
o xee } Y™ w),
jim,n ze”® 0 n

(T1. 1)
where 0,p are defined in (1. 2) and w = ¢1/2 #¥ -y C SU(2).
Writing

(0 X3z etV
— e 0

and using (I. 7) and (I1. 8)—(I1. 10}, one obtains

) = egiv/2. fi e-id/2

ntl

(stn)(sxtn+1)(F+* n)>1/2, m] 1 m
x(jin'!-l) F’Z*I 1,;‘]
(11 2)

. i+ 1 1
a(j,m,n)Kax‘f_.;.jgp-l) F,Jlm_%p—l > ((sq: n)(sxn+Dizxn+ 1)) /2 Fi. m:] Yf 1, m

x{j ¥ n)

2
(C,F), 2[5—2 ~x(j2+j+s2+s—2m2)p2 +n2— 1]
X

X Fi + op2 E W(sFn)szn+ DGFa)(jzn+1)

XFfleH’(x) (111, 6)

Calling H the direct sum &, , H, 7 (x), we see that it
splits into two comnlementarv subspaces H=H & H._
defined by H, = {FsFJj, = + Fi,}(except for series C’ and
C”, in which n takes only positive or only negative
values). It is immediate to check that H, are conserved
by @, C, and interverted by C,.

Calling HJ the direct sum & H](x), we see that @~ has
nonzero kernel on every H’ if range n is unbounded
(i.e., x = — 1, except for the O-representation); @ has
nonzero kernel on HJ for j < s and it has kernel zero
on HJ for j> s,if range = is bounded (i.e.,x = 1 and
the O-representation).

We put X7 = KerQ.N Hj and X = X/ n H,. We re-
mark that if X7 is nonzero, it contains complex-valued
functions in case j = 0 or for series C’,C” and two-
component- complex-valued functions in other cases
(hence the splitting in XJ).

Following the pattern of Sec.I. B, we see that the sub-
space K7 of H generated by the action of @' on XJjis
invariant. Mere addition of components proves

Hi=

J (@*) 70 %79 hence H = @ Ko,

Jo -S] jo

Range j, is the same as range | » | and is given in
Table II.
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However, before carrying on the reduction, we shall
deal with the maximal domain of definition of the infini-
tesimal operators, the calculation up to now being just
a formal one.

IV. THE MAXIMAL DIFFERENTIAL DOMAIN.
NUCLEARITY

Let & be the maximal subspace of ¥, on which every
polynomial expression over the generators of the Poin-
caré Lie algebrar is defined. § can also be considered
as the common domain of definition of all powers of the
Nelson- Laplace operator A = — ZK2 — 2J? — 2 p2.9

Vectors of § must be, first of all, C* functions of the
spherical and noncompact variables. Effecting the
Fourier transform over the compact variables we have
further conditions on the scalar functions Fj™(x) (be-
sides the fact that summation over j,m,n, of their
norms must give a finite sum): they are required by
the expressions of translations and boosts.

Translations impose faster decrease than any power
of coshx, for infinite x. Boosts impose the same
conditions on the derivatives, and these are the only
conditions at infinity for the coordinate functions, since
the expressions 0p~! and p~1 which enter in (III. 3) to
(1. 6) are bounded for, say, |x| = 1. These conditions
can be summarized:

lim (coshx)*(d/dx)a Fi™(x) =0 fork,q e N,
1%1- oo (Iv.1)
In case x = — 1 these are the only conditions on FI™;

but for x = + 1 there are boundary conditions for x = 0,
since p = sinhx and quantities like p™1 and op™! are un-
bounded in a neighborhood of the origin. It is a quite
tedious job to give a global expression of these boundary
conditions under the actual expression of vectors:
therefore they shall be established in the expression one
gets after effecting the j, splitting. However, we can
already remark that L2 (R*), in which lies F/™, is canoni-

cally isomorphic to the subspace of even or odd functions

(indifferently) of L2(R). The domain of definition of Fi*
can be extended to the whole real line in a compatible

way with the expression of @,,@_, C; (which change parity

for + x) and C, (which keeps it). A convenient extension
is thus

Fim™(—x)x Fim™(x)

= (— 17 (x P(s)) (Fi™ (x) = F}™(+ x)),

the “initial parity” P(s) = = 1 to be fixed by the boun-
dary conditions. Expecting them to be of the form “all

even (or odd) and a finite number of odd (or even) deriva-

tives vanish at the origin,” which shall be proved later,
one can identify the space &/(x) in which belongs FJ™ to
a closed infinite dimensional subspace of the space §(x)
defined by (IV.1).

The question which now arises is whether § is a
nuclear space. We recall that a subspace & of a Hilbert

space is nuclear if it is the projective limit (intersection)

of a decreasing sequence of Hilbert spaces H ,, such that
the canonical imbedding of H#, in H . (k > k’) is, for any
k,k’,a Hilbert—Schmidt operator.

In the present case

&= n Dom (A%).
£=0

Since A + 1 is a strictly positive, essentially self-adjoint
operator, it has negative powers which are bounded self-
adjoint operators. If one of them is of Hilbert—Schmidt
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class, say (1 + A)"# one can construct the following de-
creasing sequence, of which & is the projective limit:

H,={¢ € 3;(¢ |1 + a)2#% ¢) < w}.

The existence of a traceful negative power is thus a
criterion for nuclearity. In fact we shall prove it for a
negative power of an e.s.a.operator A,, majorated by
A+ 1,

Let | j,m,n,k) be a Hilbert basis of 3¢, the new label
k denoting eigenfunctions of the harmonic oscillator
— d? + x2,corresponding to the eigenvalue 2k + 1
(¢ =0,1,...). For fixed j,m,n,these vectors are also
a basis of §(x), and they form a convenient basis also
for x = 1, since an operator in §(x) is traceful indepen-
dently of the basis chosen, and if it is traceful in §(x)
it also has a trace in its subspace §J(x).

It is easy to establish the inequality between positive
operators: A + 1 = A; = j2 + x2 — d2. One obtains then

(j,m,n,k l Ail l jym’nyk) = (.72 + 2k + 1)-1
and
Tr(af) = 25 25 20 (j2+ 2k + 1)
i k. mn
< Ek (2 + 122+ 2k + 1)4 < w0,
I

Since (& + 1)™¢ < A7%, (A + 1)7¢ is of Hilbert-Schmidt
class and & is a nuclear space.

Remark: The existence of a trace is due to the
presence of translations; if one drops the term p% + p2,
considering thus the representation of £ obtained by
restriction of Vs, the corresponding differential domain
is not nuclear. This fact is not surprising, since this
representation is highly reducible.

The space & and its antidual §’ are reflexive Montel
spaces. The nuclear spectral theorem applies to the
triplet § © X < §’;the Casimir operators C; and C,
have a complete system of generalized eigenvectors in
&1. There exists a spectral measure for the decomposi-
tion of the scalar product of vectors of & along the
eigenvalues of C,, C,; and the restriction of US can be
expressed as a direct integral of UIR's of SL(2, C) by
means of the completeness relations thus obtained.

V. THE DISCRETE REDUCTION

We propose here to define an operator T on &, such
that T shall be an isometric mapping from § to T §, and
apply the results of Sec. . B to the representation of
T-1dUST thus obtained. We shall proceed in several
steps in the definition of 7.

To obtain a convenient basis for the reduction, we in-
troduce the operator T/ * from Hi to Hi™*:

T].j‘k Fim = {(j2 —n2) ... [(F—F + 1)2 _n2]}1/2ka,Z',m_

(v.1)
T;™* commutes with Q_,hence T/ * X, C X,_,.
Moreover,if F X;,one has
D, ,T)*F=T7* DFfor j>k (v.2)

(if 7 = k,the same relation holds for D2,D being not
defined in X,). According to the value of min|{n |,
which can be 0,1, or — s, according to the series, we
then define the operator T].O on JCJ-O :
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Case I (min |n | = 0):
To=11if j, = 0,and,if j, = 0:

iom q?_z:)o,m
T, : FJo"ex, |
[} 0 élo:m
1
(TO Fiom
AsZ+s)/2x 1} (F]°

m

g
_ o™ )> = (TF)J'(;
-1

o, 1/2(pjo,
<q>{lc;2”‘>_ < i 2(Fps™ + FX ,’5‘))
jg.m] T\ mi/2
85 T 2(Fy"

172 F—1/z

Case II (min |n | = 3):

. o.M o
Tjo'Fn C.’Kijo >

= (TF)jlg- ™

Case III (min |n|=— s):

T, : Floo™ ¢ .’ij

Jo.m __ =S pioam _ Jan m
o — &7 = T]-0 Fi9" = (TF)J.0

Next, we want to extend T; over the whole §. Intro-
ducmg the notation 7o
= (F]7,) = @IToF™)
we put in evidence the discrete splitting of § (and, by
closure, H) along values of j,. Then let T’ be the one-
to-one mapping
QZ'jo Fr];o' m Ty F'J;o,m

(the index m being irrelevant). We define then T = T T.
and we shall write 7o

a=0,lora=x2z0ra==s,

(V.3)
Now we want to introduce a scalar product in 7 §, such
that T will be an isometric mapping,and T § a pre-
Hilbert nuclear space. Let first Fi ¢ X ;; from (IIL 3)~
(I11. 6) one has

TF = & = (¢]°7),

[x(sFn)stn+1)(jxn)jzn+ )]H/2 Fj,
. d P - j
= (52 _n2)1/2p<ax_ + jopl + nop1 :tDj>F,f,

(V.4)

l:<%c— + jo‘p'1>2 —xs(s+1)p2—n2— 2rop™1D — D2]
XFl=0, (V.4)

Using these relations, and after a somewhat tedious
calculation, one finds

3325 — x(s +i)(s—j + 1) E | Filj2
= E (j2—n2)[(G— 12 pFJll2 + 3 I pDF] |2
— : <pD2FJ ]pFJ')]
=(j—1)2 Z I Ty tFile+3 E I b1/ F] |12
~3 2 AD2TJYF | T/ Fi).
Having in mind that only D2 is defined on X, one finds
by carrying on the induction and using D¥ = — D,
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2 I Fill2

n

=c(4,,x) 2 J[((H~1)2—D2)...(@2 — D)@ ] &, dv
a

with the following notations:

Case I (for j = 0),a =0, 1:

- c(d,s,1) =221 (2j)1 (s + I (s —4)!,

C(j, Sr—’ 1)
=221 (25)1 (s + 1L (j— s— D)ILsl( s— 1)1,

Case II{a = = 3):

c(j,s,1) =227 L (21" (s + 1)L (s — ) (s + 3),

c(j,s,— 1) =221 211 (s + N1 (j—s—11)1
x(s+ ) {=s=%)1,

Case IIl: c¢(j,8,— 1) =4i*s2)1(s+ )11 (j—s—1)11
X (— 28)!1(— 2s — 1)!,
a =s,ora =—35s (no summation).

Next, we consider @7 7¢ JC
(1. 16) one obtains

Z Qi7o Fio|2
-c(] JO)Z J1G? -

. Since @, + @* = 0, using

. ((jy + 1) — D2)Fio] Fio dx,

.5
with (v.5)
¢'(Jydg) = (2) 12 (Go + DI —Jp) !

We define now the scalar product in 78 by
(plyy= 2 f«p ™ (%) * E(s,do,J,a2; DZ) ¢17, (x) dx,

Mo

o (V.6a)

where E is the positive e.s.a. operator:
E = c(jgsS,x) €' (4,ig)((52 — D2). . .((Jo *+ 1)? — D2)

X ((jo—12—D2)...(la|2—D2)), (v.6b)

and D, = TDT™1, T is thus defined as an isometric
op_rator Let T be its closure on the completed space
(T);the representation TUS T ™1 is unitarily equivalent
to U$, and the new expression of the Casimir operators
depends only on s (and j,). One obtains, for Cases L, II,
Im:

(e1)- (@ )
D" = if jg = 0
®, (d2/dx2 — ys(s + 1)p~2) &,
(V.7a)
and, if j, = 0, D2 = (d2/dx?) — xs(s + 1)p’2,
(D®),q,p = [(d/dx) £ Vx(s + 2)2p 1] 2,175, (V.TH)
D,® =7 (d/dx) @, (V.7c)

The boundary conditions for x = 1 are now easy to
establish for vectors of T7§. In Case I one must have,
for x -0, &, ~ ps*1,or &, ~ p~%; this last solution is
not acceptable, since it gives no square integrable func-
tions (for s = 0 it is Q.®, which is not square-integ-
rable). In Case II one must have &,,, ~ ps1/2 hence
®_,/, ~ ps*3/2, The boundary conditions can thus be
written in the form
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(v.8)

o< ™

8 (%) = ps*#() ¢ (o),

where ¢ is a C» function of ¢ = coshx for 1 <
and

R(0) = k(1) = 1;k(}) =}k = 3.
iD_,as defined in (V.7) is an e.s.a.operator; we shall

put 76, = & T§,(x) its domain.
Jopdom

Vi. DIAGONALIZATION OF Dg AND Dg?

Rather than find an explicit expression for the gene-
ralized eigenvectors (which lie in T'§’), our purpose is
to find in each case an operator K _, such that

D2K, = K, (d2/dx?).

In series C’,C”,0,K ; = 1;the eigenvectors of D (for
series C’,C") are VA = e”\x each eigenvalue iA havmg
mult1p11c1ty one; those of D2 (for series O_) are V(l’
¢ sinAx and V(Z) = COSAX ()\ 0), each eigenvalue — A2
occurring tw1ce For what remains, we shall distinguish
x=1landx =—1.

(V1.1)

A x=

We consider explicitly the values s = 0 and s = 3,
and write again the original expressions of @, and D:

o coodd o Npaa i 4 i
§=0: (Q+F)’—]<—d—x—JUP )FJ =jpitlas pIFI,
2
(D2F) = [ii— -G+ l)p’z] Fi,
dx?
hence
dz L - . d\Ji _ . d\i d2
— —jG+ 1) 2:‘- ]’1(_> 1 — pitl > -1 =
l:dx2 g P do g P do P ax?’

. (V1.2)
since @, and D2 commute.

For s = 3 we have

- : d .\ .. 3
@.F)iy/p = (42 — %)1/2[(335 —Jop 1)Ffu/z +3p 1F:1/2:|

d

(DF)fl/z == -CE ngl/z F(j+ %)Pth;jl/z-

Writing that D and @, commute and effecting symmet-
ric and skew-symmetric combinations, we obtain

d . _\/d . -
(a + (J+%)Pl><a—1091;%Pl)

d .. Y i
=<3;—Jcpli%p1><a;t(1—%)pl>-

Since zp™1 = A1 dA/dx,with A =
on j gives

4 4 i+ Lyp 1) - Atlpitl d\i+1/2 -1/2 A ¥l
(Zi_x— (j+ 2)p > P <a3> p A

(tanh 3 x), induction

1 [dN\I1/2 d
= A¥lpgit1{& ~1/2 A1 2
A¥lpi <do) p1/24 R (VL.3)
According to these results, we put
K¢ = ps*(d/do)s p1  for j, = 0, (VI.4a)

-1
K, = ps*1 (d/do)s <" °

for j, # 0,j, integer,
0 d/do) Jo # BJo Intee

(VI. 4b)
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K, =ps'l (A(d/do)s*l/z A -1/2
0 Al(d/do)s*1/2 A
for j, half-integer. (V1. 4c)

Relation (VI. 1) is true for K, defined in (VI.4); more-
over, we have (for j, = 0):

DK, =Ks(2/dx ‘;/dx> .

(V1.1%)

In this expression, it is easy to show the spectrum and
the eigenvectors V, of D, (or D2 if j, = 0).

We shall put

v, =K,C,. (V1.5)

The boundary conditions (V. 8) impose to (C,), to be
an even functlon of x for @ = 1,% and an odd one for
a=0,—13.

We obtain thus:

i sinax

]0¢0:DSV)\=DSK$< ):iAV)\, —©0 <A< o,

COSAX

jo=0:D2V, =D2-isinAx =—A2V,, 0<sa<w,

Finally, if K% is the adjoint of K, the C, are eigen-
vectors of the self-adjoint operator K* EK _ [E being
given in (V. 6b)]. One can substitute — D2 by A2 in the
expressmn of E;as for (K*K ), substitution in (V.5) for
s = 0 and } gives

d2 dz
KK )% = (sz “ﬁ) ... ((1 — Jal)? —3”5)-(‘”- 6)

Hence, for integer s
KYEK - C\ = c(jo,8,1)"¢'(§,Jg) " (J2 +72)...A2
(s2 +22)...(1 +2) (j2 + A2)1 C,
= w(jij’ syk) * C)\,
and for half-integer s
KYEK - C, = c(jo,8,1) €' (§,5o)(42 + A2)... (3 + A2)
X (s2+22)...(:+ ;\2)(] +azyic,,
= w(j,jO,S,K)C)\.
B. x=-1

In order to find K, verifying (V1. 1) and (VI.1’), we
shall introduce derivations of noninteger order. Recall-
ing that now p = coshx; ¢ = sinhx, we introduce the
Fourier transform on the variable o:

Fo(x) = [ ": (VL. 7)

Noticing that §(x) = §, (the Schwartz space of rapidly
decreasing C°° functmns of 0), we see that F-§(x) = §,

€9y &(x)do.

and F6'(x) = . Since do = pdx,we also obtain
fY*:pr'l, F*1=g-pl,
’
_é_zp"l i:-—iff'lyff VL)
do dx ’

We now introduce the following operators, in analogy
to the case x = 1:
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KO =ps1671 |y|sgpl,

0d
Sdx ’

K¢ = B(x)*1p="1 51 | y|s*1/2 § p"1/2 B(x) ™1,

s

Kl=—ips'1g-1|y|s-y §F=K

where B(x) = vp (cosh3x + 7 sinh4x) = B(x)™® is a func-
tion verifying

dB/dx =% iplB =% i1 + io)p2B.

By straightforward computation one can establish:

2 L ss+1)p2) ke =k %2 (a=0,1), (VL8a)
dx2 TS ax2 R e
d - . d
(-d? + (S + %)Zp 1) K§ :Ks a; . (VI.8b)

We can define now K ; satisfying (VI.1)-(VL 1’) by

K, =K9 if jo =0, (V1. 9a)
KO 0 . -

K, = ( 1> if jo = 0, j, integer, (VL. 9b)
0 K,
K, 0 .

K, = < s > if j, is half-integer. (VI1.9¢)
0 K;

These formulas are exactly the same as those of
x = + 1; since no boundary conditions exist, we find two

eigenvectors for each eigenvalue:
COSAX
v-r ()
i sinAx

—0 <A< ©,

i sinAx
Jo 2 0: V=K, )
COSAX

Jo=0: VM=K, isinrx,

s VA(Z) = K, cosix,

0sa< w,
Up to now these results are formal: we still have to

check that K _ is a “good” operator, that is, show that
V) isin &'(x). That means that the integral

J7 K3(ein) - Ed@dx

converges for any ® € &(x), E being defined in (V. 6b).
To prove this, we first notice that £ conserves §(x),

so E can be omitted. The same applies to multiplication

by ps (any s) and B*1, It is then sufficient to show that

If ®()(F 1 |ylstaGparleirn)do|< w0, a=0,3,1,

or, equivalently, for ¢ € 8y :
| fIP(Y)' |y|sta(Fpa-leirz)dy | < o,

Since pe~1lei** ig a bounded C* function (and major-
ated by p-1 for o = 0), its Fourier transform is in 8’y
(and for a = 0 it is a fast decreasing, continuous function
of y, hence bounded). Therefore the integral converges
for y —» + ©;for y — 0 it still converges, since
|lyls*e|< 1 (fora = 3,1and— 1< y < 1), and since
for @ = 0,y and Fplei** are bounded and

LI |y|Res dy

converges.
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These results are still valid when substituting K* ~1
to K . One can write K, = K* 1 K*K ; since d2/dx2 and
K*K, commute,K*1 C® is a linear combination of
VD and V2.

In fact we have a stronger result:

Pyroposition: The self-adjoint operator K* EK _ is
diagonal on the set of eigenvectors {%{") } [with the
notation CW =K1 v @].

Proof: E being a polynomial on D2, we have
E V{0, = ES(22) V{1

and from (V. 6) we see that E1/3 (— A2) = E1}/3 (— A2);
EQ(— A2) = A2E}(— 22).

Now, for j, half-integer, we see that K¥*K . = 1 and
the proposition is proved. For j, integer we first re-
mark that K1*K1 = _ (d/dx)K9* K9(d /dx), and that
K9*K9 commutes with d2/dx2;thus K9*K%ei** isa
linear combination of e?** and e~¢* *. Moreover, one
easily sees that K9*K9 transforms odd functions to
odd ones and even to even ones. One can thus write

K9*K9 sinix = w; (A, s)" sinax,

K9*K9Q cosix= w,(A,s)* cosrx,
hence, for j, integer:

K*EK - C = E§(— 19 w,(,5)C{™,
w, being of course a positive function,

Remark 1: The choice of K is of course not unique,
as one can see, e.g., by substituting | y|s sgny to |y|s.
Because of multiplicity two, the different choices for K,
do not forcingly give the same set of eigenvectors for
K*EK . (and for D). However, since it is not our pur-
pose to calculate explicitly the eigenvectors of D by
means of K, we shall not pursue this point. An explicit
expression of the eigenvectors figures in the Appendix.

Remark Z2: In fact, the above results, including the
convergence of integrals, are valid for complex A.

VII. THE COMPLETENESS RELATIONS

According to the nuclear spectral theorem, the scalar
product of vectors of § decomposes according to the
formula

(olvy =20 [Col VYTV du, (VIL.1)
where V! € &’ are the generalized eigenvectors of C,
and C, ; dp is a positive measure on their spectrum and
! denotes symbolically multiplicity for each set of
eigenvalues. In the present case [ stands for j,m ; and,
as shown above, for a “pure multiplicity” index n=1,2
in series A_,A’_,B_ and O_.

Our object is to write explicitly (VIL. 1); from the
results of the discrete reduction we have

(olv)= 2 2 Lol mlylm)
joxo ij() o 0 [¢]
lml< j
+ 2 &0 1vde) (VIL. 2)
320=j,
Im) <]

with the notation of (V. 3) and (V. 6a).
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Dealing with complex-valued functions which belong
to §(x), we have the usual Fourier formula

@l = [2 o) ¥&ax = [

If ¢ and ¥ are both odd (resp. even), e ** can be re-
placed by i sin Ax (resp. cos Ax) and the integration
domains for x and X by [0, <] (we neglect multiplicative
constants).

(¢ letr )y | eirs)d,.

Treating first the case x = — 1, where the whole real
line is the domain, we have for series C',C": C, = V, =
e*x and for series O_,A_,A!,B_

if x>0,

. eirx = ckl) + ciz)
Jo=0 { if A <0,

et = CcP +clp

eiix
(0 )= 3(CV + G2 —CP +CP),
Jo # 0.

(0 ):% (C+c@ + c — @y,

eirx

Combining adequately these relations we see that, if
@,y are, according to the case, one- or two-component
functions, we obtain (neglecting constant factors)

(01¥) =T (v, Iw)—E [ 7 eleh@Tcha,
if jo = 0,
@l =2 [Feley@wiche, ifjo=0.

Putting now
¢ =K*E®)™  y=K1¥}™,
o ? Jo
we obtain
(@F™ W™y = (¢ y)
(1] 0

= f(E«p;;'" | ch)(Eq:gi;)'" |[ETLK*1Cha,
n

= Zn) J@)™ Vi e [KE*ER)YT Ol d,
= Z) Sl IV )™ vl dp v,

with dp@) = [w,(s,A)* E(~2%)%]™! ,where o = 0,3,£ s
according to the case, and w"(s A) = 1 for series O_,B_,
C’,C”, This result together with (VIL. 2) establishes the
completeness relations for x = — 1.

For x = + 1, we first notice the relations

Jo =10 isinix = C,,
i sinax L
0 = E(C)\ - C—)‘):
jo = 0:
< 0 >= L(c, +C.,).
COSAX

The Fourier inversion on odd functions can thus be
written

(@) = f0°° o) P = [T (9 1C)WTC)d,

and on two-component functions such that ¢, is odd and
@, even (again neglecting a factor 3):
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((P llp) = ? ((pa l (po(.)

Z) fooo((p , C)\—

(— l)a C—)\)(lp ' C)\ -

i

— D=*C_Jd,

= wlcywlcan.

Now, one easily verifies that (K'"E‘bj;)m)a is odd if
a=0o0r—3 and even if o = 1 or 3 ;the same holds of

course for (K o/ ™), since K*EK conserves parity.
We can thus write®

(¢f:m 1y): ") = ®'ER])™ [ K1 ). ™)

- *EpHI ™ “lyg J.7
= Jaor g KBRS I CYE LT [ Car

= g jom dp (n
= RorR;<¢Jo |VX>(\IJJo P v du ),

with
d“ ()‘-) = [w(j:jO, S’)\)]_l dh’ -

Vill. RESULTS AND REMARKS

(1) The diagonalization of the Casimir operators and
the completeness relations provide the final results of
the reduction of US into irreducible components. The
couple of numbers (j, > 0,1) or (j, = 0,22) and, even-
tually, the multiplicity index, determine an invariant
subspace which can be given a prehilbert structure and
completed to a hilbert space (see Appendix). The repre-
sentation of [ on this space can be integrated to a rep-
resentation of the principal series of SL(2,C). Since
range A = R for j, = 0 (and range A = [0,%[, for j,=0),
in all cases, the only restriction on the spectrum of UIR's
obtained is given by j,. Table I gives these results:

TABLE III.

Series of S Range jj Multiplicity
A, B, O, s,s=1,...,30r0 1

(e 0 2

A, Al 0,1,... 2

B_ $.5,... 2

c, c” -s,~s+1,... 1

(2) In Ref.4,Jo0s obtains the same results for the SU(2)
case. Moreover, he gives the “mixed scalar products”
between vectors of US and those of its irreducible com-
ponents, which do not figure explicitly here; however the
spectral measure calculated in Sec. VII and the normali-
zation of the eigenvectors given in the Appendix, provide
equivalent results.

The main difference in the technique used, besides
topological considerations which are absent from Joos's
article, is that the discrete splitting of US is effected
here after passing to the Lie algebra. This method
allows us to keep a unique formalism along all steps of
the reduction, while the one of Ref.4 does not: it makes
use of a finite dimensional representation of SL(2,C)
obtained by complexification of S to get the discrete
splitting before differentiation;in the SU(1,1) case the
complexification gives a local, nonintegrable represen-
tation, that is why differentiation precedes the discrete
splitting.

(3) It must be pointed out that the unified formalism
works very well, in many steps of the reduction, and
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especially, in establishing the nuclearity property. It
is interesting to notice that the differential domain of
the UIR's of ¢ induced by E, is not nuclear,19 while
the one of UIR's induced by semisimple little groups
is nuclear. Although this fact is not sufficient to make
a conjecture, it is a hint for further research on
nuclearity properties of induced UIR's.11

(4) The nuclearity property can easily be shown to be
valid for some other classes of representations of @®.

If the inducing representation S is a nonunitary, irre-
ducible representation of SU(1,1) (or a finite direct sum
of such representations) on a Hilbert space, US is non-
unitary, but its maximal differential domain is a nuclear
space. This is due to the fact that the proof of Sec.IV
does not depend on the value of S; and such representa-
tions are obtained by allowing s(s + 1) to be any com-
plex number. The same remark holds for SU(2), provided
one takes adequate topological restrictions (which we do
not specify here) since one has to deal with nonintegrable
local representations.

(5) The boundary conditions established in Sec.V for
SU(2) eliminate one of the two eigenvectors of d2/dx2,
and the multiplicity of the irreducible components is one.
If the test functions & belong to a smaller space § < &,
such that  and all its derivatives vanish at the_origin,
both eigenvectors of d2/dx?2 belong to the dual §’. The
space §,dense in X is invariant under the Lie algebra r,
but not under the group action: in fact, the apex of the
hyperboloid @, which is just an ordinary point, plays a
singular role in the definition of §. The local represen-
tation dU, defined by restriction of dU on &, is not equiva-
lent to dUS, although its algebraic expression is the
same. This example shows the importance of topological
considerations when speaking of Lie algebra representa-
tions, and the rigor needed to define notions like equiva-
lence or irreducibility: dUS, which is the differential of
an irreducible representation US of ® has (at least!)one
nontrivial invariant subspace on which another represen-
tation is defined by restriction!

(6) Since @ is a contraction of the de Sitter groups, it
would be interesting to compare the reduction of UIR's
of both groups on SL(2C). In fact, examining our results
and those of S0,(4,1),12 one sees that spectra and mul-
tiplicities are the same for UIR's obtained one from the
other by contraction or deformation [taking account of
the fact that two UIR's of @ with opposite masses and
little group SU(2) are needed to obtain by deformation
UIR of SO, (4, 1)].
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APPENDIX
1. Explicit expression of the eigenfunctions of Dg, Dg?

We first consider the case j, = 0;the case j, = 0 in-
teger can be trivially deduced from j, = 0, since the
two components of an eigenfunction are proportional with
ratio iA, and they are solutions of the same differential
equation as for j, = 0.

This equation is
((@2/dx2) — xs(s + 1)p2 +A2) V{V = 0, (A1)

with V{ = iK_ sinx; B2 =K cosix.

S
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We recall that for x = 1 only V&) is admitted.

Let V, = p°*1f, ; be a solution of (Al). Then f,
is a solution of

((o(d/do) + s + 1)2 — x(d?/do?) + A2)f, ; =0. (AY)

This equation admits power series of ¢ or 0~1 for solu-
tions: the interval of convergence being 02 < 1oro02< 1
in each case. The inequalities become large for xy = — 1,
since the numeric series is alternate in this case.

We consider first the expansion for 0 > 1 (in fact the
only relevant one for x = 1, since in this case ¢ =coshx);
let

fos= 22 a,(,s)g"s1mir2n, (A2)
! n=0

The coefficients o, must verify

4n(n +iNa, — x(2n + s +iN)(2n + s — 1+ iAN)a, =0,
(A3)
hence
(s+i)lnl{n+d)!la, =@4x)"2nr +s+iN)!irla,.
(A3")
Identifying f, o to p*le"i** one finds ay(d, 0) = 27#r;
we shall put a,(A, s) = c. 27>, ¢ being a constant which
may depend on s.
In the domain 0 = sinhx < — 1 (for x = — 1), we define
fx' s by

Fr o) = Fop o= 2.

One can then show that in the domain 02 > 1 one has, up
to a constant factor:

ViR = 305 U(foy s — Fa.ohs VB =4 p5" Ly o + fr o)

Next, we give the expansion in terms of powers of o,
valid for the domain 02 = (sinhx)2 < 1 (and x = — 1):

=2 8P, s)0k. (a4)
’ k
The coefficients 8, must verify
(e +s+1)2+A2)8, + (k+ 2)(k+1)8,.,=0. (AD)

Imposing that k2 be odd (even) if 7 is odd (even), one
has, up to a constant factor, on the domain 02 < 1,
ViT, =p=tfin.

The solutions of (A1) for x = 1 can be put into a poly-
nomial form. The function ¥,

S
Yy s(x) = eirs > a,(, s) (cothx) (A6)
’ &=0
is a solution of (Al) if the coefficients @, verify
(s—Fk)(s+k+1)a,—2irxk +1)a,,,
+ (k+ I}k + 2)a,., = 0. (A7)

The acceptable solution V@) is then the antisymmetric
combination ¥, — ¥, (the initial coefficient,a, being
the same.

For x = — 1, (A7) is still valid if one replaces cothx

by tanhx; however, one obtains no more a polynomial, but
an infinite expansion, since s is no more an integer.

Let us now consider the case j, half-integer. One has
to solve the equations
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d

(— £Vx (s + %)p‘l) Vi =V, . (A8)

dx

Let G be the 2 X 2 matrix

G pe (g? —g;1>,
&y 8y
where g% = (0 —vx)p? and dg, Jdx = 3 f)(—p'lgx .
Putting f, = @1V, ;, we obtain two new equations
t (o(d/do) + s+ 1)fi F J;(d/do)f)is= iNfE . (A9)

Squaring the differential operator of (A9) and summing,
one obtains

((0(@/do) + s + 3)2 — x(d2/do2)) it ; = (ix £ 3)2f% ;.
(A10)
One can thus transpose to the functions found for
jo = 0, the formulas being valid for complex A and s, in
general. The four eigenfunctions obtained by (A10) are
associated in two pairs by means of (A9); one obtains

Fas =fn(1/2)i.s+1/2 or fiis =f->\ti1/2,s+1/2 -

Using the notations of the previous paragraph one can
write:

w foxira,svrra v acira,se1/2

x = 1: V)\_s =0 ,
foxira.s+1/2 +fA+i/2,s+1/2

EYo 12— E£02 se1/2 )

3

Ri2 50172 — Q2 60172
withn,7" =1,2andn # 7n’.

x=—1 Vi"g = G(

2. Normalization of the Hilbert basis in each irreducible
component of US

The eigenvectors Vl\"};-'j-”‘ , defined by (& | V™) =

. o °
(d?m | v " ) generate an invariant subspace EJ ;

Ja DY 2Jg

for the extension of dU°® on &,when 1,A,and j, are
fixed. E], can be given a pre-Hilbert structure and
*o

then be completed to a Hilbert space, if one defines a
scalar product by means of the orthogonal basis V{',*.
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The scalar product must be such that the infinitesimal
generators be skew-adjoint.

We shall put (dropping the multiplicity index)
(Vi | V{,{;:‘)D = 0, B a8y 50" RU). (A1)

The norm § does not depend on m, since the compact
generators are still given by (1. 7).

But Q depends on j: from the expression of the scalar
product in § in (V. 6) one gets

i 1,
Q+: V)]\,;'no - )g,jo ™ ’
Q1 VI} o (2—i + ) vik,

and K ; has the expression (I.17), where D = i\A. Since
Q, + @* = 0,the norm Q must verify

Q) = (= Jo)J + Il i — NG +ir)Q( — 1), (A12)

or
Q) = (G —J)tJ +ig)!G— NI +iN)IC, (A127)

where C is a positive constant.

To obtain an orthonormal Hilbert basis (and a more
symmetric expression for @,,Q_), one must change from
Vi to V™ Q(iyve.
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The general exact solution of the equation of geodesics for the general exact plane homogeneous
gravitational wave is given by solving the vacuum field equations for the line element

ds? =A(u)dx?* +B(u)dy* +2C(u)dxdy +dz* —df?, withu = (z — t){2'” of these

waves. The subclass of the exact plane sandwich waves is given explicitly by solving exactly the
flatness condition for that line element. The relative energy and momentum transfer on test particles

by the sandwich wave is discussed.

1. INTRODUCTION

In this paper we give the solution of a classical prob-
lem, i.e., the general exact solution of the equations of
geodesics of all plane gravitational waves.

The metric of the plane gravitational wave propagat-
ing in the direction of the z axis is usually given in the
form (Ref.1,Gl1.4.1.17)

ds? = dx2 + dy2 + 2dudv + 2H(x,y ,u)du2, (1.1a)
with
w=(AQN2)z—1t), v=(QAN2)(z +1),

dz2 — dt2 = 2du dv, (1.1b)

whereby the vacuum field equations are reduced to

02H | 92H

L4+ =0, 1.1

ax2  3y? (1.1c)

The subclass of the homogeneous plane waves is given
by the following special solution of (1.1c):
H=35A@W)[cost(u)  (x2 —y2)— sinf(u)2¢y], (1.1d)

where A(u) and 6 (x) are arbitrary real-valued functions.
In case of

AW) =0 1.2)

the space-time is flat, and vice versa. Thus choosing
A(u) = 0 outside the range u, < u < u,,we get a so-
called sandwich wave,

The coordinates of (1.1) have the disadvantage that in
them the equation of geodesics cannot be solved in
general form. However,as we shall show, there exists
another system of coordinates for the homogeneous
plane waves in which we can solve the equation of geo-
desics exactly. Thus we are able to calculate the rela-
tive energy-momentum transfer on test particles by a
strong gravitational plane wave. This is of interest
because the gravitational waves of realistic sources
are asymptotically homogeneous plane waves in small
regions.

2. THE HOMOGENEOUS PLANE WAVE

In the coordinates above-mentioned which we denote
also by x,y, z,t, the line element for the homogeneous
plane wave takes the form2
ds? = A(u)dx? + B(u)dy? + 2C(u)dxdy + 2dudv, (2.1)

with « and v defined as in (1. 1b):
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u=AN2)z—1t), v=AN2)z + ), 2dudv = dz2-—d2.
(2.1a)

The formulas transforming (1.1) into (2.1) is given by
Ref.1.

Numbering of the coordinates in the sequence x,y,u«,
v, the only nonvanishing component of the Ricci tensor
is comp. (4.1).

R,, = (1/4D2) (2DD" — D'2 — 2DA) (2.2)
uging the abbreviation4

D=AB_C2, (2. 32)

A =A'B"—(C'2, (2. 3b)

where the prime means differentiation with respect to
u. Thus the vacuum field equations result in the vacuum
condition

2DD" — D'2 — 2DA =0, (2.4)

In order that (2.1) is a normal-hyperbolic Riemannian
space of signature (+ + +—) the quadratic form

Au)dx2 + Bu)dy2 + 2C(u)dx dy
must be positive definite, being equivalent to

Aw)>0, B@u)>0, D(u)>0. (2.5)
The equations (2. 1), (2. 4), and (2. 5) represent the
general homogeneous plane vacuum wave propagating

in z direction.

In the next step we satisfy the condition (2.4), by
which only two of the functions A(u), B(x), and C(«) are
independent from one another. Therefore we look for an
appropriate independent pair of variables for the gene-
ral vacuum solutions. As such a pair we choose C(x)
and D(u), with which we get from (2. 3)

AB =D+ C2, (2. 6a)

A'B'=A + C'2, (2. 6b)
wherein A is determined with respect to (2. 4) by

A =D"—%(D'2/D). (2.4%)
The quotient of Eqs. (2. 6b) and (2. 6a) gives

A’B' _ A+ C2

—_— T ——— T ] . 2. 7

A5 ~Dprce W @7
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Furthermore, the logarithmic differentiation of (2. 6a)
results in

A B _(D+C2)
== " = . -
A E Dprc M (2.8)
Herein the function ¢ (#) and n(x), in view of (2.4'),are
determined by the knowledge of C and D only, Solving
the quadratic equation system (2.7), (2. 8) for A’/A and
B'/B,we find

A'/A =3@m V2 — 49), (2.9a)
B'/B =% FVn2 — 449). (2.9b)
Integration of (2.9) gives the result
A) = Ag expt [* (V- 43)du, (2.10a)
(V]
B@) = By exp3s [ (n *Vn2 — 48)du. (2.10D)
0

Because of the condition (2. 5), the constants of integra-
tion Ay = A(uy) and By = B(u) must be positive and can
be normalized to 1 by an appropriate gauge of the coor-
dinates x and y.> Furthermore we can restrict our-
selves to the upper sign of the root in the integrands of
(2.10), because the choice of the lower sign means a
permutation of A and B, which results only in an inter-
change of the coordinates x and y

Thus after specification of the functions C(u) and
D{u) with D(u) > 0 [compare (2. 5)] the metric (2.1) is
determined uniquely according to (2. 10).6 Certainly,
the metric must be real. This restricts the free choice
of the functions C(u#) and D(u), because the radicands in
(2.10) have to be positive. With respect to (2. 4), (2.7),
and (2. 8) this results in the subsidiary condition:

3D'2D—4D2C'2—4D2D"+2C2D'2 — 4DC2D” = 0. (2.11)

3. INTEGRATION OF THE EQUATION OF GEODESICS

We use the equation of geodesics in form7

og dxo°
‘d—s(go)\uo):%u"u” ax”:’ ucz'gé—- (8.1)
In case of the metric (2.1) this reads8:
% (Aul + Cu2) = 0 » Aul + Cu2 =y = const, (3.2a)
% (Bu2 + Cul) = 0~ Bu2 + Cul = 6 = const, (3.2v)
3
aw’ _ 0 » u3 = @ = const, (3.2¢)
ds
dut _ 1re1y2 A 2)2 g "l
d_szz[(u)A+(u)B + 2C" ulu?]. (3.2d)
Solving (3. 2a,b) with respect to u1 and 42, we get
ul = D"1(yB — 6C), (3.32)
u2 =D1(6A —yC), (3. 3b)
u3 = a. (3.3c)

In the case of @ = 0, instead of integrating (3.2d), we de-
termine u4 by the normalization condition

ul‘u“ = €,

where € = — 1,0, 1 for the time-like, light-1like, and
space-like geodesics, respectively. Thus we find
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ut = 2a)l[e — A@ml)2 — B2)2 — 2Culu2]. (3.3d)

With the help of (3. 3c) the further integration of (3. 3)
yields (@ = 0)

¥ = a1 fu“ D1(yB— 86 C)du + x, (3. 4a)
o
y=al[*D1(6A—yCldu+y,, (3. 4Db)
0
u=as+uy, (3. 4c)
_ u
v=a1 f"o utdu + v, (3.4d)

with 44 given by (3. 3d).
In the case of @ = 0, the integration of (3. 3a,b, c) are

X =%y +uy" s, (3. 5a)
y =y +ud-s, (3. 5b)
U= U, (3.5¢)

whereas double integration of (3.2d) gives

v=vy+ugc s+ 1 s2[A5u)2 + ByB)2 + 2Coudu?].
ot %o ol%5 ol¥g %o
(3.5d)

With the use of (2.5),it is easy to show that the geo-
desics (3.5) are spacelike or lightlike only.

The entirety of the timelike geodesics, used in the
following, are obtained by setting € = — 1 in (3. 3d).
4, THE SOLUTION OF THE FLATNESS CONDITION

We deduce the general form of the functions A(u), B(u),
C(u) of the metric (2.1) representing flat space-time
in the region ugy < u < u,.

The nonvanishing Christoffel symbols of (2.1) are8

I}, = T}, = (2D) (BA’ — CC"),

ri; =i, = (2D)1 (BC' — CB"),

2, =T%, = (2D)1 (AC' — CA"),

r3; = T4, = (2D)1 (AB' — CC'), (4.1)
rill =—3A,

Ti,=—13%B,

Tip=T3=—:2C,

and the nonvanishing independent components of the Rie-
mann tensor of (2.1) ared

Ry313 =—4D3[2DA” — D' A’ + AA], (4.2a)
Ry353 =—4D3[2DB” — D' B’ + AB], (4.2p)
Rygys = — 4D3[2DC"— D' C' + AC]. 4. 2c)

The necessary and sufficient condition for (2.1) to rep-
resent flat space—time in 4y = u = %, is given accord-
ing to (4.2) by the following set of equations (flatness
condition).

2DA” — D'A’ + AA =0, (4.3a)
2DB” — D'B' + AB = 0, (4.3Db)
2DC" — D'C' + AC = 0. 4.3c)

As will be shown in the Appendix, the general solution of
(4.3) is given by
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AW) =Ag + Ay —ug) + 3 Ay(u— ugy)2, (4.4a)
B(u) = By + By(u — up) + 3B, (u— uy)2, (4.4b)
Cu)=Cq + Cy(u—ug) + 3 Colu — ug)2, (4.4c)

where the real constants Ay, By, Cy,A4,B,,Cq,A5,B,,
C, are restricted by (2.5) and by the conditions

Ay = (2D)1(D1A, — ApAy), (4.5a)
B, = (2D0)"1(DyB; ~ AyB,), (4. 5b)
Cs = (2D()1(D;C; — A,Cy), (4. 5¢)

with the abbreviations Dy :=AyBy — C%,D, :=A,B; +

AyBy— 2CyCq,and Ay = A;B; — C2, For the indepen-
dent functions D and C, (comp. Sec. 2 1) we find from (4.4)
(4.5)
C(u)

=Cq+ Cqlu— ug) + %(2Do)'1D1C1(u —ug)2, (4.6)

D(u) = Dy + Dy (u— ug) + (21_11)_0 D% + 3 Ao)(u — uy)2

+ 1 D, Ag(u—

iD, ug)3 +

A% (u—uy)t, 4.7

16D

It is easy to show by the general method of Eq. (2.10)
that (4, 6) and (4. 7) lead back to (4.4), (4.5) with the
constants

Dy + C3
A, > 0 arbitrary, Bj= —a (4.8a)
0
= Aol 200021 + ko) (4. 8b)
2(D, + C3)
_ Bo(Dy +2CoCy — ko) (4. 8¢)
2D, + C3)
A, =231~ Bodo. (4.84)
2D,
B, = 2181 = 80Bo (4. 8e)
2D,
c, = 2261 = 4oCo (4. 81)
2D,
with
Ko = (D2 + 4D, CoC, — 4DyC2 — 4D Ay — 44,C3)V/2,
(4. 8g)
The reality condition (2.11) for (4.6) (4.7) reads
D% + 4D,CoCq — 4D(C3 — 4D Ay — 44,C% = 4.9)

Thus the 6 constants Dy > 0,D,,44,Cy, Cq,A, > 0 ful-
filling (4.9) can be chosen arbitrarily and the functions
A(u), B(u), C(u) are uniquely determined according to
(4.3) and (4.7). The result (4.7) is suitable to construct
sandwich waves as will be done in Sec. 5.

5. ACCELERATION OF TEST PARTICLES BY
SANDWICH WAVES

In this paragraph we calculate the acceleration effect
of a plane gravitational wave on test particles. We
choose a so called sandwich wave which is different
from flat space-time only in a finite interval u, <=u=u,.
Since we have a gravitational wave without source, only
changes of the relative velocities of two test particles,
i.e., relative momentum and kinetic energy, have physi-
cal significance,
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We obtain a sandwich wave if we choose the twice
continuously differentiable independent functions D(u),
C(u) such that outside the range u, =< u < u, they have
the form (4.6), (4. 7) whereas in the range uy, < u < u,
they are arbitrary fulfilling only the conditions (2. 5),
(2.11) and the conditions of differentiability at the limits
u, and u, (arbitrary wave profiles). Without loss of
generality we can assume that in one of the two flat
space-time regions, e.g., for u = u, we have?

Du)=1, Cw)=0, A@m) =1, B@m=1. (5.1)
In this paper, for reason of simplicity, we restrict our-
selves to the case where the two particles are at rest
relative to one another before the wave has arrived at
them,10

Without loss of generality, we can write the geodesics
of the partlcles [puttingy =6 = 0,0 = — 1/¥2 in (3.3)
and (3.4)] as:®

1. particle:
x =0,
y =0,
u=— (1/V2)s + uy, (5.2.1)
v=(1/N2)s + Vg3
2. particle:
X = %0
Y =%Yo,
u=— 1/VN2)1 + ug, (5.2.2)

v=(A/N2)T + uy + vy,

Equation (5. 2) is valid for — o < % < + ., In both

cases the coordinate velocities of both particles are
wl=u2=0, ud=—1N2, ut=1N2 (5.3)

independent of s and 7. For # = u; this means that the

two particles are at rest relative to one another. For

% =< u, and in particular for # = u,, the comparison of

the velocities of the two particles must be performed

by a parallel transport using the Christoffel symbols

(4.1). This gives the following for the coordinate velo-

city of the first particle at the position of the second

one after the wave has swept over them (¥ = ug):

1. particle:

1
ul = el [T3; " %o + T4 " ¥ol,

"xg + T2, * ¥5l, (5.3.1)

uf = 71—“ [r3,
ud =~ 12,
uf = AN2)(1 +A@d? + Bu%)2 + 2Cu}u?),

while the coordinate velocity of the second particle at
the same position is given by (5. 3)

2. particle:
% = u2 = 0
uj =~ 143, (5.3.2)
= 1NZ,

We separate »{ into two components
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uh = (AE/mg)uhy + uf (5.4)
determined by the condition u{u,, = 0. Then AE = —
mou uy, is the relativistic kinetic energy (including the
rest-energy) of the first particle judged by the observer
ul (second particle). (m, = mass of the first particle).
In the same way we separate the (light-like) ray vector
k¢ of the wave, given by

Pl =k2=p3=0, ki=1 (5. 5)
into two components:
Beo= (AN2) - uh + ke (5.6)

With respect to k#u,, = 0,k# is the vector of the direc-
tion of propagation of the wave judged by the observer
u. According to this we separate

[T u
uj =uh +ul

with uff [ k* and ufx, = 0. Then Ap, = myVuf'u,, is the
momentum of the first particle in the direction of propa-
gation of the wave and Ap, = myvu, u,, is the momen-
tum of the first particle perpendicular to the direction
of propagation of the wave, both judged by the observer

The calculation of these quantities according to (5. 3)
yields

AE =my(1 + Fy), 5.7

Apy=moF,, (5.8)

Ap, =myV2F,, (5.9)
with

Fo=35[Apx§ + Byy§ + 2Co%0¥)s (5.10)

where A,, B,, C, are given by (4.8). According to this,
the transfer of energy and momentum by the gravita-
tional wave is determined by the “constants of the gravi-
tational wave” alone (and not by integrals over the pro-
file of the gravitational wave). x,,y, are the components
of the transverse distance vector of the two particles
before the wave has swept over them, whereas the longi-
tudinal distance (in the direction of propagation of the
wave) is irrelevant.11

For special orientations of the particles and for
special sandwich waves, the relative energy and momen-
tum transfer vanishes if Fy = 0 is fulfilled. Two cases
should be discussed explicitly:

First, if the distance vector of the particles has the
direction of the propagation of the wave (x; =y, = 0)
the energy and momentum transfer vanishes for any
sandwich wave. Second, if for the constants of the wave
Ay = By = C, = 0 is valid, the energy momentum trans-
fer vanishes also for any orientation of the particles.
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APPENDIX A

That (4.4) with (4.5) is a solution of (4. 3) and there-
fore a sufficient condition for (2.1) to represent flat
space-time can be checked by direct calculation.

To show that (4.4) with (4.5) is also a necessary con-
dition, we assume (2.1) to represent flat space-time.
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Expressed in a Lorentz coordinate system the equation
for two infinitesimally neighboring geodesics read

xb =xf +ufs and x# =x}b + dxh + (@f +dug)T, (Al)

where the subscript null refers to the initial values.

The relative distance of these geodesics judged by the
observer u, is given by

(ar(s))2 = [(dxfdxy,) + @xpug,)?
+ 2(dx0“Du5)s + (Duijuo“) s2, (A2)

wherein

Duty = duly + (T4) qufdxg. (A3)
Equation (4.12) is exact in s but in dxf,dy% only correct
up to the second order, Furthermore, (A2) with (A3) is
independent of the choice of coordinates and is valid in
any curvilinear coordinate system of flat space—time.
In particular (A2) must be valid for the two neighboring
time-1like geodesics given by (3. 3), (3. 4) setting
y=0=0,a=1

u=1ug+ s, (Ada)

x =dxg, y=4dyg, v=1vy—37. (AdDb)

In both cases we have

u=1uy+rT,

ur(s) = w (1) = wh = (0,0,1,— 3), (A5)
ie., duf=0, (A6)
and

dxl =dxy, dxd=dy,, dx3=0, dx}=0; (AT)

with (4.1), (A5), (A6), (AT) Eq. (A3) reads

Du} = (2D,) L (B Al — CoCh)dx,
Duf = (2D} HACp — CoAp)dxg

+ (ZDQ)—l(AoBE) - C()C’o)dy o
Duj = Du§ = 0, (A8)
and (A2) results in
(@r(s))? = (axfydxg,) + 2(dx0“Du‘6)s + (DuléDuOM)sz, (A9)

with Du, given by (A8).

On the other hand, (d7(s))2 can be calculated directly.
Because dx* = dx¥, is joining the two geodesics and is
orthogonal to #f at any point s, we find
(dr(s))zzgwdx#dx"z A(u)dxg + B(u)dy? + 2C(u)dx ydy -

(A10)

Comparing (A9) with (A10) we find that A (u), B{u), C{u)
are quadratic functions in s = # — u,. Thus we have
arrived at (4.4).

To derive (4.5), we put (4.4) into (4.3). Comparing
coefficients in (u — u,), we get the set of equations
—X;[A1By + ApBy — 2C,Cy] + X,[A, By — CF]

+2X,[A,B, — C2] =0, (Alla)
X, [AgBy +A By — 2C,Cq]— X [A¢B, + AyBy + A B,
— C% —2C,C,] =0, (Allp)
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2X,[ABo—~C3]— X [A¢ B, + A;By— 2C(Cy]

+ Xo[A;B; — Cf] =0, (Allc)

where X stands for A, B,or C.
Under the supposition (4. 4) these 9 equations (Al1)
are equivalent to (4.3). By using the abbreviations

Do = A¢Bo — C§,

Ay =A1By — C%,

Op =AyB; — C%:

(A12)
Dy =AoB, +A1By— 2C,C4,
Ry=AyBy + AgBy— 2C,C,,
(All) reads
XoAg—X1Qy +2X04 =0, {Al13)
2X,Dy — XDy + X548, = 0. (A15)
Since D > 0, (A15) yields (4. 5),1.e.,
Xz = (2D0)_1 (X1D1 bt XO Ao), (AIG)

whereas (A13), (Al4) is then satisfied identically.

APPENDIX B

In this Appendix we show that there exist coordinates
(*,¥,u,0) preserving the general form (2.1) for the met-
ric of the plane gravitational wave, i.e.,

ds?2 = A(u)dx? + Blu)dy? + 2C{u) dxdy + 2dudv,
=Am)de2 + B@)dy2 + 2C@)dxdy + 2dudy, {B1)

with the property that for any prescribed point Py =

(*g,¥ 0s #g» Vo) lying in the flat space-time region #= u,

{i.e.,uy = u,) and for any prescribed normalized time-

like vector situated at P, we have

Po=1(0,0,u,, vp), (B2)
u, = (0,0,— 1N2,1/2), (B3)
A@) = B@) = 1,C@) = 0 for & = u,. (B4)
The metric (2. 1) has the Killing vectors
p=of, =oh xk=of,
w0t [ Baw—oy f; 19) du—64x,  (B5)
w=—o £ oy L 2 - syy,
as can be checked by using the Killing equations
8uv ok + 880, &80, =0 (B6)

Then

?)“ = @4 E" + 9 g“ + KRy xE + P‘il’g" + #szg“,
i=1,2, @t =kKyx* (BT

3

with constants a;;, 4 ;; ,k; , ko are also Killing vectors.
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g)# is lightlike and orthogonal to cgl‘ and gg# .
The vectors £¢, ¢, x#, 74, p# have vanighing Lie devia-
tions among on:e a?xotherlwizth exception of
(g =: g0y — g, == (=)

Therefore, g ;i = 1,2, 3 have also vanishing Lie devia-
tions if we ;-equire

B11833 F Hy9Ga9 = Qy3fay + @y akas. (B9)

Besides (B9), we choose the constants @, 1i5,K; Such
that we have at P

ulh ¢ =0, i=1,2, ul&gp =—1N2 (B10)
and such that

0,00,y,u) = :,o«“;p“
satisfy at P
0y3 =0gp =1, 0y5=0, 0j3 =04, =07,=0. (Bll)

(" means partial derivative with respect to u).
Equations (B10) and (B11) are satisfied if we require:

K

— 3y~ 1 2 1 2
3 =— W) Aquga;y + Bougay + Couga, + Coufayl,

i=1,2. (B12)

(Note: u3 = 0 since u is time-like.) ky=— (V2 u3)™1
{B13)

Apl:10;1 + Boaa;s t+ Cotyia;5 + Coajya,5 =0y,

i,j=1,2 (B14)

Aja;a;, + Byaga;, + Craga;, + Chapa,
T @by + i A, ta, =0, 4i=1,2

B1
Equations (B9), (B14), (B15) can be solved, e.g.,with( 5)

ay1 = AgIV2, ag; =— Cold Do) /2,
dgo =A%/2D'61/'2’
Bi1=—AAG2, By =1 CoAAP2 — 5 CLAG2
—1CA,AR2,
Ba1= 34:C0A0Do) V2 — § C,AY2 DG/2
— 1Co A AY2 D2,

Q13 = 0:

-’ - 1 -
Pog=— %AlchoslzDolfz — BIA%/ZDOI/Z
+ 3 CoCi(Ag Doy V/2 + § C3A1(A0)3/2 D2
—1C8A1 (Ao Do) 2.

The Killing vectors ¢, i=1,2,3,are linearly indepen-

3
dent (as vector fields) because they are linearly indepen-
dent as P,. Because they have vanishing Lie deviations
among one another, we can choose a system of coordi-
nates (x,v,u, v) such thatl3

or =01,  @r=04, @F=0Y4. ({B16)
101 2 3
From Killing's equation (B6) there follows
8 =8, ). (B17)
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From the orthogonality of ¢# and ¢* to ¢# and from the
1 2 3
time-like character of ¢* there follows:
3

Z14=834=844=0. (B18)

Now, we introduce coordinates x* = (X,y,#, 7) by
=X + fu(m).

With (B17), (B18) this leads to (* means differentiation
with respect to u)

guy = Epu * ""’ v = 1!2)41 (Blg)

F36) = (83 (834 — 834)s (B20)

Z11f1(@) + 5,1 f200) = B3y — 5511 + F3@), (B2la)

B12f1(@) + 25,/ 2(@) = 833 — Z32(1 + f3), (B21b)

« = 3 = P 3 = P S
4f4(ﬁ)=§33—'§33‘—2.2 Esifi(u)—‘ E gijfi(u)f](u)-
i=1 i,]=1 (B22)
From (B18) we get

83470, £y1850— (812)2 % 0.

Therefore (B20), (B22) can be solved such flat

g3a=1 &3,=0, i=123, (B23)

and P, has the coordinates (0, 0,7, ;).

From (B19), (B23) there follows (B1). Equation (B16)
is also valid in the coordinates (%,y,#, 7). Thus from
(B11) we obtain

Z():EOZI, EO=61=A—1=EI=0 (B24)

at P, . Since P lies in a region of flat space-time,
(4. 4), (4.5) is valid. From this we conclude (B4), From
(B13) there follows (B3).
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1P, Jordan. John Ehlers, and W. Kundt, Abh. Math.-Naturwiss. K. L.
Akad. Wiss. Lit. Mainz 2, 21 (1960), see Eq. (4.5.1).

?The form (1.1a) of the plane wave could give rise to the erroneous con-
clusion that the exact homogeneous plane wave is not as exactly plane
as e.g. a plane electromagnetic wave {comp. Ref. 3, p. 526) since
(x, y, u) depends explicitly on the transversal coordinates x and y. [If
H (x, y, u) is independent of x and y. (1.1a) is flat space-time.] How-
ever the existence of the form (2.1) for the exact plane wave disproves
this proposition. On the other hand the metric (1.1a) has the advantage
that because of (1.1¢) it fulfills a linear superposition principle, whereas,
in view of (2.4), (2.1) does not.

3H. Bondi, F. Pirani and I. Robinson, Proc. R. Soc. Lond. A 251, 519
(1959).

“Note that D = — g, where g is the determinant of gy.
5In (2.1) we can assume without loss of generality that for some u = u,
we have A(uo ) = B(u,) = 1 which implies D(u,) = 1 — Cluy)?

[comp. (2.3a)]

SThe functions C(u) and D(u) must be twice continuously differentiable
in view of (2.4).

"The 4-velocity ¢ should not be confused with the (index-free) co-
ordinate u.

3We use the following ordering of the coordinates:

', x?, x3, x¥)=(x, y, u, v).

%See Appendix B.

184 general discussion of the influence of sandwich waves on test particles
with arbitrary initial conditions as well as a comparison with linearized
theory will be the subject of a forthcoming paper.

""Equations (5.7), (5.8), (5.9) agrees with the result (2-5.58) of Ehlers—
Kundt (Ref. 12) with Ig’2 = 4F,. The calculation of (2-5.58) was per-
formed in the coordinates of (1.1a). Therefore, (2~5.58) is no explicit
formula since g’ can only be calculated by solving the differential
equation (2-5.5.7), a problem which cannot be reduced to an integra-
tion, generally. On the other hand, our method has lead to the
explicit result (5.10). Furthermore, we remark that the result
(2~5.58) is by no means general. As in our calculation, it was supposed
that initially both particles have no relative velocity.

127.. Ehlers and W. Kundt, “Exact Solution of the Gravitational Field
Equations”, Gravitatlon: An Introduction to Current Research, edited
by Louis Witten (Wiley, New York, 1962), Chap. I1.

13Gee, ¢. g., L. P. Eisenhart, Ref. 14, p. 48. Compare Ref. 1, p. 100 for a
similar treatment.

141, P. Eisenhart, Continuous Groups of Transformations (Princeton U.P.,
Princeton, N.J., 1933).
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It is shown that six operators forming the Lie algebra D, can be introduced in order to treat the
hypergeometric functions by Lie theory techniques. The relation of these operators to the three
operators of the Lie algebra s/(2), which were used previously in treating the hypergeometric

functions by Lie theory techniques, is discussed.

I. INTRODUCTION

In the study of special functions the techniques of the
theory of analytic functions are usually applied. It is
possible however to derive relations involving these
functions, for example generating functions, additions
theorems, etc by replacing partially the analytic methods
by group theoretical methods!-¢ The new techniques are
based on the representations of Lie algebras by genera-
lized Lie derivatives and the multiplier representations
of local Lie groups.

Because of its importance in mathematical physics
the hypergeometric functions F{a, b; c; w} have attracted
a great deal of interest, and several generating functions
have been derived by Lie theory methods by Weisner,1
and by Miller,5 using a Lie algebra with three operators.

In the present work we consider six operators which
obey the commutation relations of the generators of an
50(3, 1) group. They give after complexification the
algebra D, in Cartan's notation. Six new operators are
derived from these, which transform the functions
F(a, b; c; w)t™ among themselves, and therefore can be
used in treating the hypergeometric functions by Lie
theory techniques. In Sec.III the six generators of the
SO(3, 1) of Sec.II are transformed to six new operators,
three of which forming an s/{2) algebra, are identical
with those considered by Miller® in connection with the
hypergeometric functions. The other three operators
however do not transform the functions F(a, b; c; w)t™,
which are basis of the sI(2) algebra, among themselves,
and therefore they are not useful in the Lie theory treat-
ment of the hypergeometric functions. Finally in Sec.IV
we show that the six operators of Sec.II can be used to
treat the incomplete beta functions by Lie theory tech-
niques.

H. LIE ALGEBRA

In this section a six-dimensional Lie algebra will be
given, which transforms the hypergeometric functions
among themselves. Consider the operators

’ . 0
L12=M3=z—a—{-;
COSP €COSE 3 . coscp)
. _ _ ; [cos® cosd g s 9 . COs¢
Lyp=M, = z( sing 3¢ S35 % Sins
sing coss 3 3 sincp)
. _ . (e coss g 3 . Sne
Ly=M,=—1 ( sin¢ o COS¢ 35 %9 5ing/’
. [sing 3 a
4 — — — ———— ———— e
L, =N =—i (sin& 3¢ cos@ Cosd 3
. sing cosé A in.S)
"‘-ZO"-—g{I—lT—'” COosS@ S
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T AL . 3
L,=N,=—i (_m 3¢ — sing coss =
| COS¢ COSJ
+ io —_S-iﬁw_ —k sin<p sinJ),
L, =N, =—i(sm.s§3_k coss), 2.1)
which satisfy the commutation relations
[L,pu,Ls,))\] = (gu)\L:vp + gupLu’)s._ gplejx— gu,\ Lp’p):
8n=8n=8ua=—8u=1 (.2)
i.e., they are generators of an $0O(3, 1) group. The
Casimir operators are
M2—N2=o02+{(k +1)2—1, M-N=-—iolk +1). (2.3)

In Eqs (2.1) o and k are free parameters. Therefore
the operators (2.1) generate all SO(3, 1) representations.

Let (coss) #*R’ be the functions on which the operators
L., act. We “extract” the factor (coss)* from the Hilbert
space and define new operators L“’; such that

L,, (coss)*R'= (coss)* L R’ (2.4)
The operators L, and L, satisfy the same commutation

relations. We introduce new variables x and y by the
relations

sing = i tanx, ¢ =1, (2. 5)
and then we consider the transformation
w = [cos(x/2)]?, ¢={1—[cos(x/2)]2}/2ey (2.6)

Also we extract as before from the Hilbert space the
factor [w(w — 1)]°/2 and define new operators L,, such
that

L, [ww —1)]°/2R = [ww — 1)]°/2L, R. 2.7
In the variables w and { we get
a
L,= tTf[ ’
J 3 3
L,=3 [t@xa—%—t %—4—0)-!»71 (w - 1)—&;_ +ap o)] ,

d [
L“:% [—-t (wm*——té—t— +0)

1 3 8

. 9 )
La&:t(ZW(w—l)m‘f't-é-?'f‘Z(O'—k)w*'k“—O),
Copyright © 1974 by the American Institute of Physics 172
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___[w(t2—1)+1](2“’—1)_53_+t2—11
27 2t dw 2 ot
w(tz—1) +1 (2 — 1)(2w —1)
- ; to ot ’
flw(tz +1) —~1]2w —1) 3 41 3
Lia= ([ pY; w2 At
) G Jtr V-1 (2 + 12)§2w — 1)) . (@.8)

We define the operators J,,J* by
L,=Jd,L,=—@G/2)(Jg* +J°), L, =3 —J).
(2.9)
From (2.8) and (2.9) we get

(2.10)

which satisfy the commutation relations

[Jy ¥} = £J,  [J%d7) =2d,. (2.11)
Consider the SO(2, 1) subalgebra with basis L

and L,, . The Casimir operator C is

L

12> 24>

C=L3—L3—L =dJ2 +JJ —J,. (2.12)

We find

02

az
C=wlw—1) 5z + tyn7

(o +1)2w—1) %} +olo+1). (2.13)

Since L ,, L, ,and L, generate an SO(2,1) group we must
have
[C —u(m +1)]R(w, ) =0, (2.14)

where R(w, t) are the basis of the representations. If we
write
R(w, t) = &, (w)tm, (2.15)

Eq.(2.14) gives

Qv(l——w)iz——+[o-m +1—2(0+1)w]—d—
dw? dw
— (o0 —u)(o +u + 1» $,(w) =0. (2.16)

This is the hypergeometric equation. lf c —m +1 =0,
—1,—2, - -, its solution which is regular at w = 0 is

¢, W) =Flo—u,0+u+1,6 —m + 1;w). (2.17)
Its second solution which is not regular at w = 0 is

¢, (w)=[w™/(m—)]F(m —u,m +u +1;m — o + 1;w),
(2.18)

where the denominator m — o has been inserted for
convenience. Since [C,J;] = [C, J*] = 0 the operators
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d,,d* and J- transform the functions R (w, t) among
themselves. If we define lu, m) by

lu,m) = F(oc —u,0 +u +1;0 —m + Lw)t™, (2.19)

we find from the explicit expressions of the operators
Jy,Jd%and J-

Iy lu,m) =mlu,m),

J*lu,m) = (m —o) lu,m + 1),

w+m)u—m +1)

i 1 lu,m —1). (2.20)

I lu,m) =—

We also find that the operators L,,,L ;,and L,, trans-
form the functions |u#,m) among themselves. To simpli-
fy the notation let us define the operators H* by

H*= L, % iL,,. (2.21)

Then we get
(6 —m)o(k +1)

H*lu,m) = ulu +1)

ju,m +1)

_{o=—m)u +0 +1)(k —u) lu +1,m + 1)
@+ 1 + 1)

+(o—m)(u-—0)(u +k +1) lu —1,m +1),
u(2u +1)

@ +m)u—m + o(k +1)
uu +1)(o —m +1)

H-lu,m) = fu,m — 1)

Lt ot Nu—m t Ve —uu—m +2),
@ +1)Q2u +1)o—m +1) ’

et m)e—o)u +k+ 1) +m—1)
u@u +1)(o —m +1)

xlu—1,m—1),

s fmo(k +1)
Lluym) =i (——————u(u T ju, m)

+(u +0+1)u—m+ 1)k
(v +1)(2x +1)

—u) lw +1,m)

(2.22)

" w—o)u +k+1)u+m) lu—l,m))
w(2u + 1)

Equations (2. 20) and (2. 22) tell us that the functions

|, m) form a basis of the representation of the operators

L, , which give after complexification the algebra D, .
erefore a six-dimensional Lie algebra was introduced,

which can be used to treat the hypergeometric functions

by Lie theory techniques.

1§). EXTENSION OF MILLER'S ALGEBRA

The Lie theory treatment of the hypergeometric func-
tions has been extensively discussed by Miller.> His
approach is based on the Lie algebra s/(2) with basis
J* ,J°, and J, satisfying the commutation relations
(2.11). His operators can also be derived from the
SO(3, 1) generators of Eqs (2.1). To do that we intro-
duce the operators L, as in (2.4), we make the transfor-
mation (2. 5), we make the transformation

w = [cos(x/2)]% t = {1 —[cos(x/2)] 2} 2>

and we extract from the Hilbert space the factor
w~*(1 — w) °/? defining new operators N,, such that

3.1)
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Lj,w*(1 —w)°2R" = w-(1 — w)°/2N,,R". (3.2)
The operators N, become in the variables w and ¢
=t
a
=% fwd 2~ 9 _ ;2
- ( X g Ky

+(u—o)w—u]>,

_1 2 42 P
Ny=2 (t("’aw+tat ~ i o —w Ltk
+(u—-—o)w—u]),
No=i -1 +t2 +2u—r)t—ou+k+
= w 3t w 9
N (E—=1+w)@—w) 3 t#—-13
3= 27 w 2 af
o1t w)@—w) , , B—1tw_  2—w
u 2tw +k tw to 2t
s+ —w)2—w) 3  2+1 3
Nw”’( Y 5w 3 3f
(2+1—w)(2 —w) 24+1—w 2—w
+u T —k ” +o TR
(3.3)
Writing N, =J5, Ny, =— (/W +J7),N,, =3+ —
J’ )weget
, ]
J3=t5't—,
e 9 40
Jr=t é"aw”at “) ’
J"=:— <w(1-w)az) ta—at—+(u—o)w-—u>, (3.4)

which are the three operators used by Miller. Their con-
nection with the hypergeometric functions is easily seen
if we consider the equation

[Nfz — N2, —NZ, —ufw +1)] f(w,8) = Qoz(l _ w) awz

—wit o w[—2u +w(2u — 0 —1)]

+ wil — o) % —wu(u—o)) flw,Hy=0 (3.5)
and the expansion

flw,t) = Zm‘,h,,,<w)tm. (3.6)

We find that %,,(w) must be a solution of the hyper-
geometric equation

éﬂ(l—w) T +[—2u —wim —2u + 0 +1)]dw
— (0 —u)(m —u» h,w)=0. (3.7

Therefore if 2u is not an integer the function'k ,(w) is a
linear combination of the solutions F(o —u, m —u; —2u;
w) and [w2«n/(2u + 1)|F (0 +u + 1,m +u + 1;2u + 2;w).
We see that a treatment of the hypergeometric functions
by methods of Lie theory can be based on the operators®
N,,N,,andN,,

12277142
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In the present case the operators N, ,N,,,and N, can-

not be used to treat the hypergeometric functions by Lie
theory techniques. To show that consider the functions
be,m} = w-4F(o —u, m —u; —2u; w)tm, (3.8)

From the series expansion of the hypergeometric func-
tions we find

1—w) diw F(a,b;c;w) = EZCEF(a, b;c; w)

_ab(c —a){c —b)

e + 1 wF(a +1,b +1;¢c +2;w), (3.9
2 (c — 2a)( b) .
<1_E> F(a, b; c;w) = ——c(:l‘—-_cT)———-F(a,b;c,w)
—2ablc —ale =b) kg + 1,8 + 15¢ + 2;0)
c2(c2—1)
~iFra-1,6-1c-2uw), (3.10)
Then we get from (3. 3), (3.9), and (3.10)
(mo(k —u + 1)—u2( +1)
Naa lum}_z\ um + 1) bty m}
(o2 =ud)(m2 —ud(k +1) lu —1,m}
2u2(4uz — 1)
+2(2u — k) lu + 1,m}> . (3.11)

Therefore the operator N, transforms among them-
selves the functions |u, &F of Eq. (3. 8) and not the func-
tions F(o —u, m — u; —2u; w)t™, Using Eq.(3.11) and the
commutation relations of the operators N, , we find
again that the operators N,; and N, do not transform the
functions F(o — u, m — u; —2u; w)t™ among themselves.
Therefore, contrary to the case of the operators L, , the
extended Miller's algebra formed by the operators N,,,
prv=1, , 4, cannot be used to treat the hypergeo-
metric funct1ons by Lie theory techniques. If, however,
we restrict ourselves to the subset N,,,N,,, and N 247
several nice relations involving the hypergeometric
functions can be derived.®

IV. INCOMPLETE BETA FUNCTIONS

So far we have considered only the solutions of the
hypergeometric equations (2.16) and (3.7) which are
regular at w = 0. In this section we shall consider their
solutions which are not regular at w = 0, i.e., the func-
tions

Iu‘m(w, By =[wme/w—o)|Flm —u,m +u +1;
m—o +1L;wim (4.1)

in connection with the operators L, of Eqs (2.8), and the

functions
2, ) =w1/2u + D]F(o+u+1,m +u +1;
2u + 2; wtm  (4.2)

in connection with the operators N,, of Egs. (3.3).
The incomplete beta function B, (p, ¢) is given by”

Byb,q) = [aT £ — e = P /p)F(p, 1 — g

p+1;w). (4.3)
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Therefore, if 0 = u, we get

(4.4)
(4.5)

I, ,(w,t) =B, (m —u,—m —u)tm,

I, ,(w,t) =B, (2u +1,—m —u)tm,

It is obvious that the operators L,,, L ,, L,, transform
the functions I, ,,(w, f) among themselves. More specifi-
cally we have

J, I =ml

3°um u,m?

o (m —u)r(nm_+ou +1) 1

Iy = (m—0—11I

u,mtl ?

(4.6)

u,m-1"°

Also we find

L _i(mo(k+1)1

34Iu,m = u(u + 1) u,m
+(u +m + 1w —o0 + 1)k —uw
(@ + 1)(2u +1)
+(u ~m)u +k+1)u+o0) i >
u(2u + 1) u-l.m

utl,m

(4.7

From Eqgs. (4.6), (4.7), and the commutation relations of
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the operators L, we easily find that the operators

L, and L,; also transform the functions I, , among
themselves. Therefore we see that the whole set of
generators L, transforms the functions I, ,(w, £), which
for 0 = u are the product of an incomplete beta function
times t™, among themselves. Using this algebra one can
treat the incomplete beta functions by Lie theory tech-
niques. For w = 1 the incomplete beta functions become
complete. The amplitudes in the Veneziano model® are
expressed in terms of complete beta functions.

Again it is obvious that the operators J5,J'*, and J'-
transform the functions I, , (w, {) among themselves.
However the other three operators N ,,N,,,and N, do
not have this property.
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The formalism of covariant conditional expectations is described as leading to an operational

definition of generalized observables in quantum mechanics, wide enough to account for the

fuzziness inherent in actual measurement processes, relative to a multidimensional physical

continuum. As an application, a position operator for the photon is defined and its intrinsic fuzziness is

discussed.
1. INTRODUCTION

The aim of this paper is to present a theoretical ana-
lysis of measurements where residual imprecisions are
allowed. The fact that actual measurements are always
imprecise is well-known and led Poincaré! to distin-
guish carefully the “mathematical continuum” from the
“physical continuum.” In the mathematical continuum
the notion of identity satisfies the usual transitivity con-
dition, i.e., for three points A, B, and C of the mathemati-
cal continuum:

A=B,B=C implies A=C. (1.1)
By contrast, this property cannot be assumed for the
notion of ““indistinguishability” in the physical continuum
attached to the raw data of experiments. Indeed, for any
two elements E, and E, of the physical continuum, there
exists a sequence {E,,E,,...,E, ;,E,} of consecutive
elements such that,for ¢ =1,2,...,n — 1,E,; is experi-
mentally indistinguishable from E,,, although E, and E,
are distinguishable from one another; we have
E,=E,, E, = E,,.

o E,1=E, andE, #E,. (1.2)

To pass from the physical continuum to the mathemati-
cal continuum requires an idealization, namely that in-
finitely precise measurements are in principle, if not in
fact, attainable. In an effort to avoid this perhaps
dubious idealization, ZeemanZ? suggested a consideration
of what has come to be called “tolerance spaces” or3
“fuzzy geometry.”

Aside from the fact that actual measurements are
always imprecise there are at least two, perhaps even
more compelling, reasons why a theory of fuzzy obser-
vations should be developed. First, in the usual formal-
ism of quantum mechanics—linked as it is to the notion
of a mathematical continuum, rather than a physical
continuum—one cannot even formulate an unbiased test
of whether there exists an elementary length in nature.
Second, the usual formalism leads to some serious
difficulties when one wishes to give a theoretical account
of position correlation experiments with photons. The
modifications, that the existence of an elementary length
would imply, in the algebraic formulation of quantum
mechanics have recently been explored by Jordan.4
The possible existence of observables which do not admit
dispersion-free states led him to give up the power-
associative law:

A°A)° (A°A)=A°(A°(A°A)),
in general, for an arbitrary observable A of the system.

The problem of the position operator for the photon has
been the subject of several papers in the last ten years.

(1.3)
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Wightman5 showed that a position operator in the usual
sense cannot be defined for the photon, a relativistic
elementary particle of mass zero and spin one. Jauch
and Piron,® and Amrein? suggested a genuine mathema-
tical generalization of the concept of localizability; they
constructed as an archetype of their theory a localiza-
tion operator for the photon. We shall see that the posi-
tion observable for the photon appears as an intrinsi-
cally “fuzzy observable,” and that this term can be
given a physically motivated and mathematically precise
meaning, using the formalism suggested by Davies and
Lewis,8

Our paper is organized in the following manner: In
Sec. 2 we explore in some detail the essential features
of a simple example, and indicate how fuzzy observables
can be acommodated within a natural extension of the
formalism of quantum mechanics. In Sec. 3 we recall
the definitions and a theorem pertinent to “operationally
defined observables”; these encompass fuzzy obser-
vables as a genuine generalization of the usual concept
of (fuzzy-free) observables. In Sec. 4 we study the res-
trictions imposed upon the observables by the require-
ment of covariance under certain symmetry groups.
The reader's attention is called to our operator 7T, de-~
fined in this section. Finally, in Sec. 5, we apply these
results to two particular situations, the second one
leading to an operationally acceptable definition of a
covariant “fuzzy position operator” for the photon.

2. PRELIMINARY EXAMPLES OF FUZZY
MEASUREMENTS

‘I'o motivate our discussion, consider a massive, spin-
less particle, constrained to move on an infinite line R,
and assume that we are interested in making a measure-
ment of its position.

Let L2(R) be the space of square-integrable, complex
valued functions on R, and @ the usual position operator
defined by

(QV)x) = 2y (x),

for all x in R and all ¥ in D(Q), the dense domain in
L2(R) of the self-adjoint operator @. We have then, by
the spectral theorem:?

Q = [, ¥ Pdx),

where, for every Borel set E in R, the projector P(E) is
defined by

(P(EYY)x) = xg (¥) Y (&),

for all ¢ in L2(R), x, being the characteristic function
of E,i.e.,

(2.1)

(2.2)

(2. 3)
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xg®) =1, 1ixeE,

=0, otherwise. (2.4)
According to the usual rules of quantum mechanics, the
expectation value (¥;Q) of @, when our system is in the
state ¥ associated to a normalized vector y in D(Q) is
given by

(¥;Q) = (QY,¥), (2.5)
which we can rewrite as

(4;Q) = [y xp,ldx), (2.6)
where p (E), defined by

py(E) = (P(E)Y, V), 2.7

is naturally interpreted as the probability that the par-
ticle be found in E when the system is in the state ¥.

Clearly, the above interpretation requires that E be
sharply defined. Suppose now that our measuring
apparatus has a finite resolution A,i.e., it cannot dis-
tinguish between two points which are separated by a
distance less than A. This inaccuracy will be reflected
in the location of the midpoint of the set E, for example,
and consequently, we shall not obtain the quantities

(E) by our experimental procedure any longer. Rather,
we shall obtain average quantities pﬁ (E),over some
appropriate distribution.

Let x, be the coordinate of the midpoint of the inter-
val E. Then, experimentally x, is uncertain by the
amount A, so that an experimental determination of the
set £ would in general lead to a set E iy, with midpoint
%" located somewhere in the interval [x, — A/2,

Xg + A/2]. (Here,by E, we mean the translate of the
set E by the distance x.) Better still, may we assume
that the observed midpoint x’ of E ., is distributed
on the real line R according to the probab111ty density
x f ﬁ (x), centered at x; and having a standard devia-
tion A, We shall assume f2 to be symmetric around
xy. Let x = f2(x) be the corresponding distribution
around the origin,i.e.,

) = £56c — %o).
Then,x +» 5 (x) satisfies

M fa) =0,
(M) f5()=f5(x),
am [, fek)ydx =1;

for all x in R;

for all x in R;

V) [, x2f5 (x)dx = A2,

Besides, we should also assume that f2 be strongly
peaked around the origin, if our determination of the
midpoint x/ of E, . is at all to be meaningful. Actually
we shall require that

V) fR x27 f&(x)dx = O(Aa27), for all integersn = 0,

a condition which is clearly satisfied, for instance, for
the Gaussian distribution

A ) = (av2m)? exp[- 3 (x/4)2],
and for the flat distribution

FA) = (/A X -1/2ar, 1720010
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with A = A’/23.
Assuming such a distribution f2, we may write

PLEB) = fo APy B, )dx'

= [ fAONPE) Y, )dx'.
Using Eq. (2.4) it is then easy to see that
PAE) = fo xg* o) | ix) |2dx

= (@*(E)Y,y¥), (2.8)

where the * denotes convolution, defined by
g fx) = fo &) flx —y)dy,

and a2(E) is the bounded, positive, linear operator on X,
defined as:

(a2 (EYY) (%) = x g * F2 ()Y ),

for all  in X[=L2(R)].

Equation (2. 8) makes it clear that if our position
measurements are not infinitely precise, we obtain, not
the projection operators P(E),but rather the more
general positive operators a” (E). It is easily checked
that the a2(E)'s satisfy all the properties of being a
positive operator valued (POV) measure,10 viz,,

@ ad(¢) =0,
at(R)= I,

(2.9)

¢ being the null set,

[ o)
(D) aA(_OLj:l E;))= 27 a®(E,), for disjoint sets E,
i= i=1
(strong convergence being meant).

Thus, as in Eq. (2. 2), we may now construct the opera-
tionally determined position observable @4:

= fR x ab®(dx).

This operator acts on a vector ¢ in X in the following
manner:

(2.10)

Q2Y)(x) = x2¢(x), (2.11)

where, as expected, x2 is the average
x0 = [ %' fA () dx’

of x with respect to the probability density distribution
f2. Since we took f2 to be symmetric about x,x2 isx
itself, so that in fact,

QAY)(x) = xy(x).

Since the probability distribution p(E) has been re-
placed by p2 (E), an operationally defined function A%
of the position will in general be different from the
corresponding fuzzy-free observable A. To make this
precise let @ = {Q} ” be the von Neumann algebra
generated by the projection operators P(E) defined in
Eq.(2.3). Then, as is well known,11 @ consists of
operators A of the form

Ay)(x)

where,A: x € R = A(x) € C, is a bounded Borel function
on R. @ is thus isomorphic to the x-algebra L®(R) of all
bounded measurable functions on R. An arbitrary nor-

(2.12)

= Ax) Y(x), (2.13)
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mal state p on A can then be identified with a positive
function p in L1(R) via

(P;4) = [fA@p@x) = fy AW)p(x)dx.
In line with what has been said above, we associate to

every normal state p on G the fuzzy state p2, defined by
the distribution

(2.14)

P& = pxfA. (2.15)

Correspondingly we can associate to every observable
A in @ a fuzzy observable A2 defined operationally by

(p3AL) = (p2;A), (2.186)
for all normal states on G. Clearly,

A2 (x) = A*f2(x) in L®(R) (2.17)
and thus:

Ab = [ xa®dx) on L2(R). (2.18)

It is important for the sequel to notice that if one re-
peats the averaging procedure, one geis

[(A28]) &) = (Axf2)* fo(x)

Jagd the corresponding dispersion increases, namely to
2a

(2.19)

For illustrative purposes, we formally extend (2.17)
to define, for all positive integers mz,

QM (x) = (Qm)4 (x)
Z (7) Cvmemen foyrrao)a,

n=0

(2.20)

so that
QW) =1,

Q(l)(x) =X,
Q2x) = x2 + A2

and, up to first order in A2 for all m = 2,
QUM(x) =~ @Qm(x) + 3m(m — 1) A2xm~2,
From this the well-known error law:

[[Q(Zm)_ @ (m))2]/(Q(m))2]1/2
m(A/x) = mbQ(x)

6Q ™(x)

1

follows immediately, indicating that we are indeed on the
right track.

THhe relation with Jordan's idea? is obtained upon
equipping the real vector space G2 generated by our
Q (m)'g with the product law:

Q(m)o QW = E (ZD)!Qm)< n) Q(mn-4p) Adp
p/\2p

(Zp = ma) @.21)

We notice that with this product @2 does indeed become
a power algebra,i.e., in particular

QWo @ = QD) (2.22)

for all integers n = 0, but that it fails to satisfy the
power associativity condition; we have
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Q°Q)°(R°Q) —Q°(@°(Q - Q) =241,

which vanishes [compare with Eq. (1. 3)] only in the
limit A — 0 of infinite precision. In this limit @ (™) re-
duces to @™ (and more generally A2 reduces to A) and
the product ° reduces to the ordinary product. We
therefore obtain the expected result that, in the limit

A - 0,G4 with its algebraic structure tends to the
algebra generated by the ordinary powers of @, and
equipped with its usual power structure.

(2.23)

It might also be proper to notice at this point that
Jordan4 linked the failure of the power associative law
to the fact that there do not exist dispersion free states
on the algebra of observables of interest (here @2). We
have here indeed that the admissible states p2 have a
dispersion 5p4 which is always bounded below by A,

One might now wonder whether the generalization
Jrom the projection valued measure P(E), associated to
@, to the positive operator valued measure a2 (E), asso-
ciated to @4, can be axiomatized properly. This is pre-
cisely where the axiomatic approach to quantum proba-
bility, of Davies and Lewis,8 can be used, and we shall
come back to this in the next section. What is specific
to the example studied here is that both the approximate
observable E — a2 (E)(i.e., @2) and the exact observable
E v P(E) (i.e., Q) exist for the system. There are, how-
ever, physical situations where only an approximate
operator E+> g2(E) can be defined. This happens, for
example, in the case of a photon, for which a position
operator is definable only as long as measurements are
made with a finite precision. We shall construct such
an operator in Sec. 5.

We ought to point out in passing that, in virtue of a
theorem of Naimark, on the embedding of POV measures
into projection valued (PV) measures,'2 it is possible
to find an enlarged Hilbert space 3, a projection opera-
tor P and a PV measure E ~ P(E) on R, extending
E — a4 (E) in the following manner:

D X = PJE,
(I a%(E) = PP(E)P.

Further, the space & can be chosen minimal in the
sense that it is generated by elements of the sort P(E)y,
where ¥ is in ¥. It is probably not always possible to
give a physical meaning to the extended space X. We
shall construct, however in Sec. 5, a projection operator
P for the photon system, following Jauch and Piron,6
which will be seen to correspond to a gauge condition.
In our present example, ¥ is the direct integral space:

= [, ®pax, (2.24)

where JCfA is the Hilbert space of all complex valued
X

functions on R which are square integrable with respect
to the measure p,, where p_(dy) = f2(y)dy. An element
Y in 3 is now a function of two real variables x and y
such that Y(x) € % 74 and ¥,(x) € C(complex numbers).
The scalar product in & is given as

WXz = Jo W0, x@), , ax, (2. 25)
where ( , )ch? is the scalar product in & it
G XNy = S $WX,WE OV (2.26)
The operators P(E) and P are then

(B(E)P), @) = x:() ¥, (), (2.27)
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and _ _
(PU),(x) = (, ¥ ()5, 1), (2.28)
X
where 1 is the unit vector in X fa which takes the value
1(y) = 1,for all ¥ in R. *

3. OBSERVABLES AND MEASUREMENT

We shall make now a systematic study of generalized
observables, particular examples of which were men-
tioned in the last section. We shall extract in this sec-
tion the notion of a generalized (operationally defined)
observable, starting from a consideration of the “col-
lapse of the wave packet” during a process of measure-
ment. Much of the material of this section is known.
For the sake of completeness however,we shall review
it here in a manner which will prepare the way for our
discussions of the next two sections.

Let us begin by introducing von Neumann's expressionl3
for “collapse of the wave packet.” Suppose that we wish
to measure an observable A in a state of the physical
system given by the vector ¢ in the Hilbert space X
(assumed separable)_. Let p, denote the normalized
density matrix ¢ ® ¥ corresponding to . Suppose that
A, as a self-adjoint operator on ¥, has a purely discrete
spectrum: {’\i}iem*: (* =4{1,2,3,...,dimension of 3c});
let 18;f;cy+ be the corresponding eigenvectors.and

P,f;cq the one dimensional projectors {§,. ®§i}.Then,
as a result of the measurement, the state p, changes
into the new state p* in the manner:

py = ot = T 1@, W) 12P= 5 PP, (3.1)
iemt iex?®

The quantity

@€, W) 12 = (P y,¥) = tr [P;p, ]

represents the probability of obtaining the eigenvalue
A; as a result of the measurement. Clearly we have
(py3;B)=(p#;B), (3.3)
for all B of the form B = 25, b,P,, as is indeed required
for a consistent interpretation of p# as the state of the
system after the measurement of the observable
A = 23,2, P, with which such B's commute. If our mea-
suring apparatus is such that it suppresses all eigen-
states of A whose corresponding eigenvalues do not lie
in a given set E, the state p, goes over, as a result of
the measurement, into the “collapsed state” p¢:

2 PP
NE€E
where the p;'s are the probabilities defined in Eq. (3. 2).
If we measure the observable A in the arbitrary (per-
haps mixed) state p, we again obtain the collapse expres-
sion (3.4) with the p,'s now given by

pe = (3.4)

pi=tr[Pip] (3.5)
Equations (3. 4) and (3. 5) define von Neumann's expres-
sion for the collapse of the wave packet during the
course of a measurement. Let us introduce the notation
of Davies and Lewis8 and write

8(E,p)= 2, P,pP,. (3.6)
NEE

It is this quantity §(E,p) which is basic to our discus-
sion, and the one which shall be generalized below.
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If p (E) is the probability of finding an eigenvalue of
A in tﬁe set £, when the system measured is initially
in the state p, we have [on taking the trace of both
sides of Eq. (3. 6)]

po(B) = tr [6(E,p)] = tr [ P(E)p), (3.7)

where
P(E)= 2, P,
NEE

is the spectral projector of A corresponding to the set
E. Clearly, Eq.(3.7) is the analogue of Eq. (2.7) for the
general state p. Thus, a study of the quantity &§(E, p)
allows us to determine the observable A, once again via
the spectral theorem:

A=2 NPo= [2 @),

Next, we observe that for a fixed p the quantity 8(E, p)
satisfies all the properties of a vector-valued measure,
taking values in the Banach space 7(5¢) of all trace
class operators on JC (under the trace norm), viz.,

M peT(30) = 8E,p) € (),
M  &g,0) =0,
() &Y+ Eyp) = 21, 8E,,p)

(weak convergence in 7(3) being meant).
In addition, 8(E, p) satisfies the further condition

tr[8R,p)] = trp. (3.8)
It is now clear in what sense the notion of a collapse
ought to be generalized in order that the probabilities
b, (E) may refer to observables with POV measures, as
opposed to those with only PV measures. Following
Davies and Lewis,8 this generalization is provided
through Definitions 1 and 2 below. From now on we
shall denote by X a locally compact space, and by K (X)
the set of all continuous, complex valued functions on X
with compact supports. [K(X) is equipped with the stan-
dard inductive topology.14] We also note that a vector
valued (Borel) measure m on X may be defined either
as a o-additive set function, on the Borel sets of X,
which assumes values in some Banach space F,or,
equivalently, as a continuous linear map

m:K(X) - F.

We shall use here this second definition of a measure.

Let 3¢ be a separable Hilbert space, £(3C) the set of
all bounded operators on 3¢, and £(1¢)* the positive ele-
ments in £(3C).

Definition 1: A generalized observable (a,X),on a
separable Hilbert space 3C, is a normalized, positive
operator valued measure a: K(X) - £(3¢), defined on
some locally compact space X, with values in £(3¢). X
is called the value space of the observable (a, X).

The normalization of a: K(X) > £(J¢) is to be under-
stood in the following sense: i f, is a monotone sequence
of elements in K(X) tending pointwise to 1, then a(f,) 7 1,
the identity operator on 3¢. The positivity of the measure
a implies that a(f) € £(30)* for f € K(X)".

In this definition if we take, in particular,R for X and
projection valued measures for a, we retrieve the stan-
dard observables of quantum mechanics.
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Definition 2: A measurement § on X is a continuous
bilinear map:

§:K(X) X T(3) —> T(30),
which satisfies

M feKX), pe T®) = &(,p) € T(X),

() if f, is a sequence in K(X) such that f, » 1,
pointwise, then tr [8(f,,p)] 7 trp,p € T (5)*

We have thus a generalized notion for the collapse
through that of a measurement. We shall take the point
of view that the quantities tr[&(f, p)] for positive f and
p define the experimentally observed probabilities when
an observable is measured in the state p. The fact that
we have indeed achieved a legitimate generalization is
borne out by the following theorem (due to Davies and
Lewis, c.f., Ref. 8).

Theorem: To every measurement § on X there
corresponds a unique generalized observable (a,X)
having X as its value space, and given by the formula

tr[8(f,p)] = tr[a(f)p],

for all f € K(X), p € 7(%). Conversely, every general-
ized observable (a,X), with value space X, is so deter-
mined by at least one measurement on X.

(3.9)

Comparing Eq. (3.9) with Eq. (2. 8) we immediately
see how the above definition of a measurement allows
us to construct the generalized observable E - a2(E)
through an analysis of the collapse process. In the next
two sections we shall indicate what experimental situa-
tions might bring about such a collapse. We also note
that Definition 2, of a measurement, is general enough
to include observables which need not have purely dis-
crete spectra. This was not possible in von Neumann's
definition of the collapse given in Eq. (3. 4), since for an
observable with a continuous spectrum the projectors
P; do not exist. The price we have to pay to achieve
this generalization is that,unlike von Neumann's col-
lapse expression, ours is not necessarily repeatable,
i.e., 8(f,p) is not necessarily the same as &(f, (1, p));
compare, for instance, with Eq. (2. 19).

4. ANALYSIS OF THE COLLAPSE EXPRESSION

This section is devoted to a discussion of a mathema-
tical characterization of a measurement §, when a cer-
tain group restriction is present. This characterization
will help us to write down a collapse expression specific
to a large class of laboratory measurement processes.
In this way we shall be able to construct in the next sec-
tion a covariant, “fuzzy” position operator for the photon,
starting from localization measurements.

In the position measurement of the Schrédinger par-
ticle discussed in Sec. 2, consider again the probabilities
py(E). X both the state vector y and the interval E are
translated by an amount x, to x[y] and E_, respectively,
we expect the new probability pr[avl (E,) to be the same
as the old probability pE). It is this sort of group in-
variance that we wish to build into our theory. If we
assume unitary implementability in 3¢ of this transla-
tional symmetry, we notice that the measurement §
ought to satisfy:

8E,,p) = U,8(E,U*pU,) U?

for translations through x, where U, is the unitary
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operator on 3¢ implementing the transformation due to
X € R.

Since in many interesting physical measurement
situations—of position or momentum, for example—-the
relevant symmetry groups G are semidirect products
of the form

G=H@EX, (4.1)
we shall, without further ado, specialize to group sym-
metries such as these. We shall then speak about mea-
surements of observables whose value spaces are the
Abelian groups X themselves. Thus, in our previous
example, G is just the one-dimensional translation group
T, which is isomorphic to R itself. Similarly, for a posi-
tion measurement in three-dimensional space, G is the
Euclidean group E3 = SU(2)E T2 of all three-dimen-
sional proper rigid rotations and translations, and T3
is isomorphic to R3--the value space of the position
operator.

Let us denote by g[*],£[ ‘], and [- ] g the action of the
symmetry & € G on 7(3),K(X) and X, respectively, i.e.,

&lf1@) = f([x]g),

and, if these symmetries are unitarily implemented
(g~ U,),

forallx e X (4.2)

gle]l=UzpU, . (4.3)
In general, for an arbitrary measurement § on X, we
shall assume the group covariance under the automor-
phisms of G = H [§] X, in the state space 7(J¢), to be of
the form:

8elf),py=g1[8f,glp)],

for allg € G.

An immediate consequence of Eq. (4.4) is that the
observable (a, X) determined by § satisfies the relation

a(glf]) =Uza(f)U,

for allg € G, f € K(X). Equation (4. 5) is referred to as
the generalized imprimitivity condition and (¢, X) and

g = U, are said to form a generalized system of im-
primitivity. If f — a(f) were a projection valued mea-
sure, then Eq. (4. 5) would define a projective system of
imprimitivity in the sense of Mackey.15

(4.4)

(4.5)

A measurement § on X which is subject to a covari-
ance condition of the type given in Eq. (4. 4),under a
group G as in (4. 1) is characterized! ¢ by a positive
operator valued function

T:X - £(T(3¢), T(3)*, (4.6)
where £(7°(3¢), 7(3))* is the space of all positive linear
maps of 7(JC), the space all density matrices, into itself.
Further, T is measurable with respect to the Haar mea-
sure y on X, in the sense that for each p € 7(3) and
A € £(%), the numerical function x < tr [T (p)A] is
measurable. Indeed, one has the relation

8,00 = [ ST, (p)u(av),

weak convergence in 7(3C) of the integral being meant.
T, also has the properties:

4.7

Te1(P) =U; T (U, pU;) U, (4.8)
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and
tr] [ T,(p)p(dx)] = trp,

for all p in T(3C)".
The dual §*(-,A) of §(*,p) defined by

tr[8*(f,A)p] = tr [A8(f, )],

for all A in £(3¢), all f in K(X) and all p in 7(3C), will be
referred to as the “covariant conditional expectation” of
A, relative to the measurement process § satisfying

Eq. (4.4).

The representation of &§(f,p) through the operator
function x v T, as given in Eq. (4.7) is very general,
and contains several particular results obtained earlier
by Davies.17 At each pointx € X, the operator T, des-
cribes the change that the state p undergoes due to the
measurement being performed there. From our earlier
association of projection valued measures with infinitely
precise measurements, we intuitively expect therefore,
that for x = T_ to generate a projection valued measure,
the operator T, ought to change the state p only locally
in an infinitesimally small neighborhood of x.

4.9)

Mathematically we can demonstrate this as follows:
Let us assume that the Hilbert space JC, in the problem,
is of the form £2 (X, u) = {y: X - x| [y |y @) 2
p{dx) < 0} where X is some Hilbert space, with norm
denoted by (| - ** ||, . Such a choice for 3¢ is always
possible if (@, X) in Eq. (4. 5) is projection valued—in
virtue of the imprimitivity theorem of Mackey.!5 Let
us denote by £1 () (X, i) the space of all functions

r: X > T(X)
for which
fX “ r(x) ”T(K) u(dx) < @,

[ + -l #(x) being the norm in 7(3¢), and let A be the
linear map:

A T() > LigoX, b,

which on elements in 7(3C) of the form Yy ® Y{Y € ) is
defined by

A @ PN E) = p(x) © Yi).

For p € T(3¢)*, the function x = |[(Ap) &)y () = try
[(Ap)(x)] actually gives the probability density distribu-
tion of the wave packet represented by p. Thus, in our
example of the particle on a line, having wavefunction
Y,x~ || @ p) &) || is indeed the usual probability function
x+ | Y(x) 2. It has been proved in Ref. 16 that the
operators T, generate an observable with a PV measure
if and only if every T, has a representation of the type:

T, (p) = [y T, @x")p)x") (4.10)
where T, is a positive vector valued measure on X with
values in £(7(X), 7(1)) [= Banach space of bounded
linear maps from 7(X) to 7(3¢)], whose support is con-
centrated at the point x. Thus, for a measurement to
have a PV observable, the collapse at each point x ocught
to affect the probability distribution at that point alone—
hence the necessity for it to be infinitely precise.

5. APPLICATIONS OF THE GENERAL FORMALISM

We saw at the end of the preceding section, that the
generalized observables defined in Sec. 3, reduce to the
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usual observables of quantum mechanics only when the
measurements to which they correspond are of infinite
precision. In this section we illustrate first the general
meaning of our operator valued function T in terms of
the fuzzy observables defined in Sec.2. We next analyze
the problem of position measurements for the photon.

Going back to our original example of a particle on a
line, we may now construct the operator function x - T,
for it, corresponding to measurements accurate only up
to a length A’. Suppose that the system is originally in
the state p,and suppose that we have a counter which,
when introduced at the point x, measures the total inten-
sity of the particle beam in the region A’x surrounding
x. Suppose further, that after the measurement at x the
counter gives out a beam consisting of a flat pulse over
the region A’x. Then the measured intensity in A'x is

Jore QoY) ax" = tr[ Py, p),

where P,., is the projection operator P(A’x), correspond-
ing to multiplication by the characteristic function y,.,
of the set A" x. Hence the observed probability density at
x is (1/4') tr[ P,., p]. After the measurement, the out-
going state at x is (1/4") x5, ® Xpr,- Thus
T (p)[1/(a)2]tr [Paey PlXarx ® Xars- (5.1)
It is now straightforward to verify that this T, defines
a measurement &, through Eq. (4. 7), with the correct
group covariance properties, and further, that it also
yields the observable E +> a2 (E) defined in Eq. (2.9),
where now f4 is the function:

fak) = (1/a%) Xt-as2, 87721 %)
centered at the origin, and having standard deviation
A= A'/243.

1t is clear that taking f2 to be any other function would
amount to introducing a certain bias in the counter over
its sensitive volume.

Using Eq. (4.7) we shall next construct an approximate
position operator for the photon. The Hilbert space
appropriate to the photon system is defined as follows.6

Let 3¢ = L2 3 (R3,d3x) denote the Hilbert space of all
complex 3-vector valued, square integrable functions on
R3. Denote by 3 = L2 ;(R3,d3x), the (closed) subspace
of those vectors A in JC which satisfy the divergence
condition.

(V- A)x) =0. (5.2)
It is this space & which describes the photon._Let P de-

note the projection operator which, acting on JC, projects
out the subspace JC:

5 = Pie

so that, in virtue of Eq. (5.2), P corresponds to the Cou-
lomb gauge _condition. On ¥ we may define the projection
operators P(E) in the manner:
(P(E)A)(x) = x (%) Ax), (5. 3)
for all A € j¢. However, these operators cannot be de-
fined in J¢,because even if A satisfies Eq.(5.2),xzA
need not do so any longer. Hence no position operator,
in the usual sense, may be defined for the photon, and
consequently, the quantity tr [ P(E) p], for a state p of the
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electromagnetic field, does not define the total probabi-
lity of finding a photon in the region E.

It was suggested by Jauch and Piron (Ref. 6) that the
photon be considered a weakly localizable system,i.e.,
a system for which it is not the operators P(E) which
define localization in the regions E but rather the new
get of projection operators F(E) given by

FE)=BE)NP (5.4)

and defined on JC.

[F(E) is the operator which projects onto the intersec-
tion of the ranges of P and P(E).]
The operators F(E) do not, however, form a PV measure.
But they do satisfy the conditions:

() F(¢)=0, FR3)=I,
(I  F(E,)LF(E,), E;NE,=9,
(M) F(E, N E,) = F(E,)N F(E,),

and the imprimitivity condition

F(E, —1)= U, FE)U;, {5.5)
under the automorphisms of the Euclidean group E3,
Thus, tr [F(E) p] is assumed to define the total field in-
tensity over the region E.

Using this definition for the localization of photons,
we shall write down a collapse expression for a position
measurement, and hence derive an approximate position
operator for the photon. Suppose that we introduce at
the point x a probe (such as an antenna) into the electro-
magnetic field, and let this probe be sensitive to the field
intensity measured over a small volume Ax surrounding
x. Suppose that initially the field is in a state p, and that
the state at x after the measurement is given by the
normalized density matrix p4. We shall assume that
p4 = Ugpj Uy, where x> U, is a unitary representation
in 3 of the three-dimensional translation group 73, and
p@ is the outgoing state after a measurement at the ori-
gin. The total field intensity in Ax is tr[F,, p], where
F,, = F(ax). However, the number density of photons
observed by this measurement is not (1/4)tr{F,, p] but
rather tr [@4 (R3)1/2 F,, C2(R3)71/2p], where C2(R3) is
the positive operator

ea(Rr3) = [ F, d3x. (5.6)
The reason for this is that (1/4) f, tr[F,, p] = trp, for
all p € 7(%)*, and @4 (R3)"1/2 ig needed as a normaliz-
ing factor. The operator T, can again be written as in
Eq.(5.1). Thus,

T,(p) = tr[€4 (R3) /2 Fyy @4 (R3)V/2p]p8,  (5.7)
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so that the corresponding position operator E — a2 (E)
is

ab (E) = CAR3)V/2 [ F, d3xCAR3)1/2 (5.8)

(the integral converging ultraweakly in J¢).

Equation (5. 7) may be interpreted by saying that the
interaction of the electromagnetic field with the probe
renormalizes the state p into the new state p’ = @4 (R3)-1/2
pC2(R3)1/2 and it is the intensity at x of this state p’
that the probe measures. As a final remark, we empha-
size once again that we have been able to define a posi-
tion operator for the photon only because we were deal-
ing with fuzzy measurements of the field intensity. An
infinitely precise measurement of intensity in any
region E ought to lead to the quantity tr [F(E)p], and
hence no position observable would be definable then.
Our result also clears up the apparent anomaly between
the experimental situation, where photon space-correla-
tion measurements do implicitly assume the existence
of a position operator for it, while no such operator
could be predicted theoretically so far. We shall report
elsewhere the relationship between our position opera-
tor and the observed photon space correlations.
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An alternative discussion, based on function space integration, is given of results given in our

preceding paper.

1. INTRODUCTION AND PRELIMINARIES

Consider a cubical container V of side L and imagine
M spheres S,(6) of radius 6 placed “at random” in V (i.e.,
the center of the spheres are chosen independently and
each center with uniform distribution in V).

For a given configuration C of the spheres we consider
the eigenvalue problem
(7Y 2m)V 2y + E©y =0, (1.1)

with ¢ satisfying periodic boundary conditions on V and
vanishing on the surface of each sphere,i.e.,

¥ =0

(98, denotes as usual, the boundary of S).

on ask(b): k=1,2,...,M, (1.2)

We wish to study the statistical properties of the sums

o 1 2 _pel0)
QUL B = = e (1.3)
L3 x4
in the “thermodynamic limit”, i.e.,
L>©w, M->o, M/L3=y, (1.4

where g = 1/kT and ¢ a dimensionless parameter intro-
duced for the sake of convenience and future use.

Setting

Y(r) = ¢(r/1), (1.5)
where
A2 =F%2/2mkT (1.6)

is the square of the de Broglie wavelength (we use a
slight modification differing by a numerical factor from
the usual definition), we are led to an entirely dimension-
less formulation of our problem,

In fact,
QOUL, a1 = —— L exp— 20, @.m
(L/A)3 A3 k1
where €€ are the eigenvalues of the Schrédinger
equation
3V2¢ + €©¢ = 0, (1.8)

with ¢ satisfying periodic boundary conditions on V =
V/A3,i.e., the cube of (dimensionless) side L/A and

vanishing on the boundaries of the spheres S,(6/1), i.e.,
¢ =0 on aS,(6/)),

E=1,2,...,M. (1.9)
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We.shall set
L=L/MA, B=8/x

and keep in mind that in taking the thermodynamic limit
we have

(1.10)

M/L3 =3, (1.11)

2. CALCULATION OF AUXILIARY QUANTITIES IN
TERMS OF FUNCTION SPACE INTEGRALS

Let r;(7) [r;(0) = 0, where 0 is an arbitrarily chosen
origin within V] denote a Brownian motion path (0 = r<
) modified by the requirement that when the ordinary
(unrestricted) Brownian path x(7) [r(0) = 0] hits the
boundary of V,it is continued in accordance with the
periodic boundary condition. {In one dimension x £ (1)
could be written as x(7) (mod L), i.e., x (1) = x(7)

— L[%(7)/L], where [a] denotes, as usual, the greatest
integer not exceeding a.} In our dimensionless presenta-
tion the diffusion constant association with the Brownian
motion is 1.

The basis of our calculation is the formula
1S ()
f—— € — telC
L3 1 o k

1 1 5
T3 WE fvdr Prob{r + r; (1) € S,(5/x),

=1,2,...,M, 0= 7 = ¢t|r;(t) = 0}

b

(2.1)

the probability inside the integral f dr being the con-
ditional probability conditioned on the path r + r;(7)
terminating at r at time ¢.

Strictly speaking formula (2. 1) does not appear in the
literature, but it is only a minor extension to restricted
Brownian motion r; (7) of well-known formulas concern-
ing ordinary (unrestricted) Brownian motion,

[If one discretizes the problem so that Brownian
motion becomes a simple random walk and the Laplacian
in the Schrodinger equation is replaced by the appropriate
difference operator, the analogue of (2. 1) becomes
nearly obvious.]

We now show how one can calculate the average
i— < OZO) exp(— te ,§C))>
L3 Np=1 ©)

over all configurations (C).
It is clear that we need the average

(Prob{r + r; (1) € S,(6/A), k=1,2,...,M,

r(t) = 0)

O=s7=t¢ (2.2)

Copyright © 1974 by the American Institute of Physics 183



184 M. Kac and J. M. Luttinger: Bose-Einstein condensation

and the simple trick is to note that we are dealing here
with a double average (one over the Brownian paths and
the other over the positions of the spheres) and to invert
the order of averaging,

We therefore fix a path r;(7),0 = 7 = ¢, terminating
at the origin and perform the average over the con-
figurations (C).

If with eackh point of the pathr + r; (1),0 = 7=,
r;(t) = 0 as a center we draw a sphere of radius G/A and
consider the (set theoretical) union of all these spheres
we obtain a sausage-like set

Wiplr + vz(1), O0=7=tr;()=0), (2.3)

and it is clear that our fixed path will not enter any of

184

the spheres S,(6/A) if their centers lie outside the set
(2.3).

The probability that this should happen is clearly

<1 _ [Wep(r +13(1),0=7 = t,xr;(t) = 0)|>M
L3 ’

(2.4)

where |W,,,| denotes the three-dimensional Lebesgue
measure (volume) of the set (2. 3).

To calculate (2. 2), we must still average over the
paths, and it is here that integration in function spaces
comes in,

Denoting the integral over the paths by the usual
symbol Ef } (mathematical expectation) we have

IWé/A(r+ r;(n,0=7 st ()= O)I)M$ )

— (2.5)
13

This can be simplified if we imagine that the spheres r

S, (6/1) conform to the periodic boundary conditions, i.e.,
if the center of a sphere falls sufficiently close to the
boundary of V the part of the sphere which would be out-
side of V is placed inside in accordance with the assumed
periodicity. With this convention |W,,,| becomes inde-
pendent of r and therefore formula (2 5) assumes the
form

fl?.— <§1 exp(— tef ))>(c)
| (1, 0= 7=l
=(—§¢-},;_75§E%< B Wé/x(rL(ZT; O=s7=1) )M{rz(t)=0§

(2.6)

where the notation makes it clear that the expectation is
the conditional expectation, the condition being that
J

X E

r;(#) = 0,1i.e., the path returns at time ¢ to the starting
point,

In the thermodynamic limit recalling that
IM/._L_3 = pA3
we obtain

.1 2
lim—=- <E exp(— teiC)
= \& Xp( P )(c_)

1
= —=—2F exp(— A3 |W;,\(x(7),0 = 7 = #)| | r(¢) = 0),
(/2nt)3 (2.7)

and it should be noted that since L — © we end up with
the ordinary Brownian motion r(7).

The method of this section permits one also to calcu-
late easily the second moment of the left-hand side of
(2.1) and we leave it to the reader to verify that

)

f3

@ @
(1 Wry 10,0 = T= H U Wy, + 17 (1,07 < t)l) /200y = 0,/2) = 0

where rL (-r) and r (T) are two independent Brownian
motions and the symbol U denotes as usual the union of
the two sets.

It should be clear that unless r, and r, are close to
each other the sets W, /,(r,) and W;,,(r,) will be non-
overlapping and that, t ere }ore, we shall have in the
thermodynamic 11m1t

1 5 c)) 2
lim (| = e — L€ >
<<L3 k=1 P I ©

e 2
= <lim%<kzz)l exp(— te,§C))> ) .

©)

(2.8)

The result expressed by formula (2. 8) is important
because it shows that the quantities

QUNL;t) = (2.9)

which (for £ = 1, 2, 3, « - +) enter the formulas of pressure
and density of the ideal Bose gas in a container with
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randomly distributed spherical impurities do not fluctuate
(in the thermodynamic limit),

3. BOSE-EINSTEIN CONDENSATION ONCE AGAIN
If we consider N free Bosons are in V with spherical
impurities S,(6) we have for a (fixed) fugacity ¢

N~ 3 v

S ]

Q(c)( L;).

1 ) 3 ;2; ¢
=\ 3.1
<)n/§17 =1 1372 (3.1)

Since as we have seen the quantities @ (°XT; 1) do not

fluctuate in the thermodynamic limit, we replace (in that
limit) the @¢C)'s by their averages and we obtain

AT

as long, of course, as the series converges,i.e,,{ is
sufficiently small.

% & E{exp[— 3| Wy u(x(1),0 =7=D)|]Ir()=0}
(=113/2 (3.2)
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The guestion now arises what is the radius of con-
vergence of the series (3.2), In our paper! we have
shown that it is still equal to unity by showing that €{©
approaches zero in probability. (We actually claimed to
have proved somewhat more, i.e., e{®) — 0 with prob-
ability one, but although this claim is not justified, the
stronger statement is not needed.)

We shall now give an alternate proof based on formula
(2.1},

With r as center, consider the sphere S(r; @) of radius
a and note that
(Pl‘Ob{l‘ + ry (7 4 Sk (6/)‘)’
E=1,2,...,M,0s 7=<¢t|r;(t) = 0}
= Prob{r + r; (1) € S(r;a),0 = 7 < ¢|r;(¢) = O}
X Prob{all of the centers of S, (6/) lie outside
S(r;a + (6/A)}. (3.3)
The second of the probabilities on the right-hand side
of (3. 3) is clearly
| $71(a + (a/x))s) M
B
and hence in the thermodynamic limit we obtain

Hm(Prob{r + r; (1) & S,(8/2),
E=1,2,...,M,0= 7= 8| x{t) = 0)}
= Prob{r + r(7) € $(r;a),0 = 7= £ | v(0) = 0}

x exp{— Fma3{a+ (6/1))3} (3.4)

The probability appearing on the right-hand side of (3. 4)
is related to the classical first passage problem for
Brownian motion and is given by the formula
Prob{r + r(7) € S(r;a),0 = 7= ¢|r(0) = 0}

2 @

= (V23 Y e fgl®(0), (3. 5)

n=1

where A, (@) and ¢{?(p) are the eigenvalues and normaliz-

ed eigenfunctions corresponding to the eigenvalue
problem

3V2p +26 =0, ¢ =0 onaSO;a). {(3.6)
It is easily seen that
(@) =2, (/a2,  ¢@*(0) = ¢1*(0)/a3, (3.7

and hence by (3. 4) and (3. 5) we have

Hm(Prob{r + r, (1) & S,(6/1),%
=1,2,...,M,0=7 = ¢|x(t) = 0})q
= (21¢/a2)3/2 exp[— (\,(1)t/a? + §mvA3(a + §/2)3].
(3.8)
Setting
a=t15 3.9
and going back to (3. 8), we obtain that for = ©

E{exp(—ua3| W, (r(1),0 =7=t||r(t) = 0} = exp(— Ct3%),
(3.10)
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where C depends on ¥A3 (but not on 6/)).

Formula (3. 10) implies easily that the radius of con-
vergence of the series (3. 2} is equal to unity.

We suspect that actually

lim t31/5 logE{exp[— vA3 | W, ,\(x(7), 0 = 7 = ¢| |r(#) = 0}
>0
=A=0, (3.11

but we have no proof except in one dimension (with 3,
replaced by %,;) where the problem is particularly
simple since W, ,,(x(7),0 = 7 = ¢) is simply §/2 plus the
range of the Brownian motion,

Heuristic support for conjecture (3, 11) has been given
by Lifschitz.2

Finally, we should state once again that even though
convergence of the series (3.2) for ¢ = 1 heralds an on-
set of a condensation, we are unable to prove that the
condensation is of the Bose~—Einstein type, i.e,, that we
have simply a macroscopic occupation of only one lowesi
state,

What is needed is a proof that in probability
mI3(e§O — (0) = w
or, more precisely,
lim Prob{L3(ef® — e©)) < a} =0,

for every a.

4. THE SHIFT IN CRITICAL DENSITY DUE
TO IMPURITIES

We obtain the critical density p. for the Bose gas in
the presence of impurities by setting £ = 1 in (3. 2).

Thus

s T w
Pe = awar/ Ty 13/2

E{exp[— A3 |W,/(r(7), 0= 7 = D]Ir(D) = 0}, (4.1)

while the usual critical density p{® is given by the well-
known formula

p© = 1)3§;_1_
¢ AV2r) S18/2°

In one limiting case it is easy to derive a convenient
formula for the correction to p{® due to impurities,

(4.2)

The limiting case in question is

8/ L, (AB6/A)2 = A2 = w, (4.3)

with w being of order 1,

By simple dimensional analysis, it can be shown that
the statistical properties of

(W alx(1), 0= 7 =]
are the same as those of
(6/1)3 IWl(r(T), 0= 7 < I/(6/x)2)|

and therefore
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Efexp[— m3|(W;,\(x(7),0 = 7 = D] | x(2) = 0}
= E{exp[— vA3 |(Wy(x(7)),0 <7

= 1/(6/M)2)|]Ir (1/(6/3)2) = 0. (4.4)

Without the restriction r(¢) = 0 it is known3 that
lLm[|W(r(7), 0= 7= t|/t] = 2ma (4.5)
[2nd )

in probability, and it is not difficult to show that (4.5)
also holds with the restriction r(f) = 0.

It thus follows that in the limit 6/ — 0, A28 = w

lim E{exp[— v53 |W,(x(7),0 =T
= 1/(6/M)2)|]1x(1/(6/3)2) = 0} = exp(— 27wl) (4.6)

and therefore in this limit
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1 >3 2 exp(— 2rwl)
= |—= — 4.7
v = () B e (&7
If, in addition, w is small we have (asymptotically)
— o) — _2_ _1_ (VA26)1/2 (4.8)
pc - pc ﬁ ?t3 * .

It is clear that in the limit considered in this section
v63 = w(8/1)2 < 1 and hence one is justified in neglect-
ing the effects of overlapping of the impurities.

* Supported in part by AFOSR Grant 72-2187.

1 Supported in part by the National Science Foundation.

M. Kac and J. M. Luttinger, J. Math. Phys. 14, 1626 (1973)

7. M. Lifschitz, Usp. Fiz. Nauk 83, 617 (1964).

3F. Spitzer, Principles of Random Walk (Van Nostrand, Princeton,
N.J,, 1964), see esp. p. 40.



A note on lattice sums in two dimensions

l. J. Zucker

Department of Physics, University of Surrey, Guildford, England
(Received 10 September 1973)

A slight simplification of Glasser’s approach for obtaining lattice sums in two dimensions is

suggested. The result for the triangular lattice is given.

In two recent publications Glasserl.2 has given some
powerful methods for obtaining sums of the form

flm,n), 1

where f(m,n) is the reciprocal of some power of a
linear or quadratic equation. He mentions that the one
result existing in the literature is

3 (m2 +n2)s = t(s)B(s) — (2s). @

m,n=1

This is not quite the case. Fletcher et al3 besides giving
(2) list several others such as the two-dimensional
Madelung-type sums .

5 B )mnm2 + a2 = — an(s)(s),
n(s) = (1 — 21°9)E(s). (3)

The ’ excludes m =#n = 0. Further they give the result
for the triangular lattice, namely,

E P 6¢(s)g(s),

gls) = _EO (3n + 1)s —

QO

S= 2

m,n=1

(m2 + mn +n2)s =
8n +2)7s. (4)

A slight simplification of Glasser's approach is sugges-
ted here. We take as an example

o0
T T (m2+n2)s §oes (zw‘ e-<m2+n2>>dt
m,n=-00 I‘(S)
6)
This can be written
1 ©
— 1s1[02(0,e7%) — 1]dt. 6
T Jo £ ] (6)
Now by using the Jacobi identity
93(0,4) 1+4 E —i __=1+4 E Z} (- l)mqn(2m+1)
n=11 + qz" n=1m=0 (7)
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(6) becomes

4 )
—2 Z ; E ; — 1)m s-1 g—n(2m+1)¢t
I‘(s) n=1 m= ( ) fo g e( 1) at

n=l m=0 “:(2_—)=4§(S)B(S). (8)

Similarly the Madelung sum in two dimensions may be
written

S ¥ )mn(m2 + n2)s

m,n =00 1

=F(?) f ts71[6%3(0,e7t) — 1]dt  (9)

and then use of the Jacobi identities for 67 will give the
result — 47(s) 8(s). The extensions to d d1mens1ons are
obvious, e.g.,

Eiz’(mf_q_mz
()f ts71[04(0,e78) — 1]dt  (10)

mZ)-s

I‘

but identities for odd powers of 6 functions are not
known. However the linear case in d dimensions can be
put in reasonably closed form. Thus

23 e 25 (my+my+mg--my)s
my=1 mg=1
00
_ (d+m—2)! 1 . QA
m=l ({d—1)1(m—1)! (m +d—1)s
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The evaluation of lattice sums. Ill. Phase modulated sums

M. L. Glasser

Battelle Memorial Institute, Columbus, Ohio 43201
(Received 29 August 1973)

Two-dimensional lattice sums of the form X'exp(ik - s)k 2" are evaluated exactly in terms of

Jacobian theta functions.

Electronic structure studies relating to chain poly-
mers, crystal surfaces, and solids frequently involve the
computation of sums having the form

oik:8

d =
e

1

extending over the (nonzero) lattice vectors of a one-,
two-, or three dimensional array.l Along with progress
in such studies interest in these sums is increasing and
various ad hoc procedures have been advanced for their
numerical evaluation. However, these algorithms tend
to be expensive in terms of computer time and it is
generally acknowledged that more expeditious approxi-
mation schemes are desirable. The purpose of this note
is to show that in a few cases “exact” analytic expres-
sions for these sums can be obtained; it is hoped that
our examination of these results will reveal enough of
the mathematical nature of these sums to suggest alter-
native numerical procedures for their rapid evaluation.
In addition, the results are interesting in their own right
and, in the two-dimensional case, may have direct appli-
cations in surface science.

In one dimension these sums reduce immediately to
well-known Fourier series so we proceed to the two-
dimensional case. For simplicity, we assume that the
vectors k are reciprocal lattice vectors for a rectangu-
lar lattice

k = 2n(u/a, v/b), (2)

u,v=0, 1, £2 -+

since there is no loss in generality in assuming that §
is a vector in the unit cell, we take

S =(ax,by), O0=suxy <L, (3)
We then have
a\s eZIi(uX*UJ’)
&= (—) 4
21} L.570.0 [u2 + (a/b)2v2]8/2 4)

and by using the identity

Ts)™s = [ at tstes (5)
we write

T(s)® = (a/2m)s [ dt B/2s1[T() —1], -
T(t) = 3 exp{—t[u? + (@/b)22] + 2milux + vy)}

u,v

where the sum extends over all values of u, v. By apply-
ing Jacobi's transformation? from the theory of theta
functions we have

2o exp(—tu? + 2miux) = (v/8)V27; exp[—(n2/t)(u + x)2]

and therefore, after separating out the term v = 0 from
the double sum in (6),
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TW —1= 3 e-tu? +2miux

u*0
+ (-,,-/t)l/z >ie 0?/t) w+xP g~ (a%v2t/ b2 p2mivy
u (8)
v#=0
Consequently,
a\s e2riux
d = —)
(2" {uzae)o us
/2 ; o0 2 2,2,/,2
w 2nivy . _ ~au+x)/t, ~a*vt/y
+ Ne dtG-3/2 ¢ . (9
T(s) = j‘; } (
v*0
However,
o0
[ attsleste-akt = 2(q/p) /2K [2(pq) V2], (10)

where K, denotes, as usual, the modified Bessel function;
2ni 12
e2niux 2w

so we obtain
bl +x|\(s-v/2
d>=|(a—>s D m
2n/ |56 wus r(s) Z,:’ o
v#0

X Ks-1y/2 <2%a ol +x |> ez""”‘-“] . (11)

This appears to be as far as one can go in general. How-~
ever, if s is an even integer K,_;/,\*) reduces to z-V2¢" 2
multiplied by a polynomial and the double sum can be
performed. We illustrate this by the case s = 2 where
we have

Kl/z(z) = (71'/22)1/26“8 (12)
and
a\? g2riux mb 1 2n@s) wlurxi+2ni
P =[— + [ — — e ol .
(27T> LZ,% u? (a) Z,) o]
v =0 (13)

Out of the double sum we separate the term « = 0 and
then express all the sums as a sum over positive values
of » and v. By introducing the quantities

qg=er@, o=y +i(a/b)x, (14)

& can be expressed simply as follows:

42 o )
q,=_.a_ ZS(E_ZLM_JC_I_E_Z_) 21_<32mav +C.C.>
272 o1 u? ar v

+ % OZQ) i 1];_q2uu (e2riav 4 g2miav 4 (c.c.), (15)
u=1v=

where c.c.denotes complex conjugate. The v sums are
elementary since

iv‘lx” =—1In (1 —x) (16)
=1

and
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cos2mux _ ab
27!’2 u=1 u2 27

a0
— 2 5 Inl(t — greetria)(1 — gauezmia)| . (1)
T u=1

1 — e2ria)

Inserting the value for the first sum, which is a well-
known Fourier series,3 and performing an elementary
manipulation we have

ab

o In(2e-"@/®)x | ginnal|)

2
& =5 (2—x +3)—

ab %
—3; In| 1 (1 — 292 cos2ra +q%)|. (18)
m u=1
However?
I Gl(z: q)
II (1 - 2(12‘ cos2z + q4“) = V3 csC 2 q-l/G__j___ ,
u=1 [91(0,,1)]1/3
(19)

where 6; denotes a Jacobian theta function. Hence, after
some simple algebra we find the result

n2 — 22 1n| fyfne, @)

2m " [6{(0, q)]V3

That the result (20) is jointly symmetric in a, b and x,y,
as is manifest in the definition of &, follows from
Jacobi's transformation.2 Alternatively, the above deriva-
tion can be used to furnish a new proof of this important
identity. Equation (20) can also be expressed in terms

of the function #3which is computationally somewhat

2
& =% ;2 2ab
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simpler than 6y. Because the theta functions are gener-
ally approximated well by two or three terms of their
series representations, (20) has obvious computational
value. By comparing (20) with the results of Refs.5
and 6 a number of new interesting mathematical results
can be obtained relating to the exact evaluation of theta
functions of special arguments which the reader is
invited to work out.

Although the above calculation is susceptible of some
generalization [for example, denominators of the form
(2/a2+uv/c + v%/b?)s can be treated), extention to other
values of s or to three dimensions does not appear to
be possible. However, for the denominator (#/a)2 +
(v/b)2 + w2, the sum over u and v can be reduced to an
exponentially converging single sum which may be of
value in three dimensions; since our concern has been
with exact results, we do not explore these avenues here,
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The polaron without cutoffs in two space dimensions

Alan D. Sloan

School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia 30332

(Received 25 September 1973)

Hamiltonians for the polaron of fixed total momentum are defined using momentum cutoffs. A
renormalized Hamiltonian of fixed total momentum is defined in two space dimensions by proving
the strong convergence of the resolvents of the cutoff Hamiltonians. The Hamiltonian for the
physical polaron is defined as the direct integral of the fixed momentum Hamiltonians.

1. INTRODUCTION

The model considered in this paper is that of a spin-
less relativistic electron interacting with relativistic
phonons. The one-particle momentum state space for a
d-dimensional spinless electron is L2(R 9) and this is
also the state space for the phonon, or quatum of lattice
vibration. The Hamiltonian for the electron is

H, = f E,,_(0)b*(p)b(p)dp, (1.1)
where 8*(p) and 5(p) are the electron creation and
annihilation operators of momentum p, respectively, and
where

E, (0)=(1p]2 + m2)1/2 (1.2)
is the relativistic kinetic energy function for the electron
of mass m,. H, acts on antisymmetric Fock space over
L2(R4), A,

The free phonon Hamiltonian is

K= fR Jwik)a* (k)alk)dk, (1.3)
where a*(k) and a(%) are the phonon creation and annihi-
lation operators of momentum k&, respectively, and where

w(k) = (1k]2 + p2)1/2 (1.4)
is the kinetic energy function for the phonon of mass u.
K acts on symmetric Fock space J.

The state space for arbitrarily many electrons and
phonons is A ® F. On this space we define the inter-
action Hamiltonian as

o=, f, wey
X[6*(p + k)b(D)alk) + b*(p — k)b p)a*(k)]dkdp.

This is a modified Yukawa-type interaction in which the
pair creation and annihilation terms have been dropped.
The total Hamiltonian

(1.5)

H=H,® [ +I®K+\H, (1.8)
also acts on A ® F, A is a real number and is called the
coupling constant, An important property of H is that it

leaves the number of electrons invariant. Consequently

we may consider the case in which a certain fixed num-

ber of electrons are present.

If no electrons are present then H is just I X K and
the dynamics is understood. The bare and physical
vacuums coincide. There is no wavefunction re-
normalization.

In this paper the case of one electron is considered.
If, in this case, A = 0, then the electrons and phonons do
not interact. Again the situation is well understood.
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Thus for the rest of the paper we assume x # 0. When
d> 1,w V2 ig not in L2(R?). Consequently, H is only
defined on the zero vector.

To overcome this problem we first replace w=1/2 in
H, by a function f in L2(R%). That is, we introduce a
momentum cutoff. Let H,(f) and H(f) denote the modi-
fied interaction and total Hamiltonians, respectively.
Modulo technical conditions on f, it is known that H( f)
is a self-adjoint operator on L2 (R9) @ &, which is
bounded below. It is also known that there exists a zero
total momentum rest state for each fixed f. That is, if
we write the state space as a direct integral of infinites-
imal subspaces of fixed total momentum,

LYRNE § = [ Hd, (1.7
then the Hamiltonian also decomposes as
H(f) = [H,(f)dp, (1.8)

where each 3, is a copy of F and each H (f) is a self-
adjoint operator on JC,. It is known that ﬁo( f) is bound-
ed below and that the gottom of the spectrum of Hy(f)

is an eigenvalue. A corresponding eigenvector is called
a zero total momentum rest state. Let ¥(f) denote such
a rest state.

To remove cutoffs we specialize to the case of two
space dimensions, d = 2. Using a sequence {f, } of
cutoff functions that agree with w~1/2 on sets that in-
crease to R2 as n - © we obtain corresponding sequen-
ces of rest states, {¥(f,)} and operators {H(f,)} and

(f, ). It is shown that {¥(f, )} lies in a norm compact
gset of 3, = ¥, so that some subsequence converges
as we remove cutoffs

}Lirpm ¥(f,) =Y (1.9)

Thus there is no infinite field strength renormalization.

After adjusting the electron mass so that the lowest
point in the spectrum of H(f,) is zero we find a sub-
sequence A, of the sequence of indices for which (1.9)
is true, such that for every p in R2 and v > 0 the resol-
vents {(H,(f,) + ¥)"1: n € A} converge strongly to the
resolvent H,(*) of a densely defined, self-adjoint, posi-
tive defmlte operator on IC,. Since

H(S,) +ryt= [Hf,) +rVdp

it will also follow that there is a self-adjoint operator,
H(®),on L2(R2)® &, such that {(H(f )+ 7)l;n € A} con-
verges strongly to (H( )+ rylasn for » > 0. We
show that inf (spectrum H(*)) = 0. The contraction
semigroups and unitary groups of H(f,) also are shown
to converge to those of H(*).

H(*) is the one polaron Hamiltonian without cutoffs in
two space dimensions. H(*) is defined on L2(R2)® 7.
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Thus, it is not necessary to change Hilbert spaces when
we remove cutoffs.

This model is related to the one Nelson considered.!
He investigated the case of a nonrelativistic free elec-
tron Hamiltonian in three space dimensions and was able
to remove cutoffs without changing Hilbert spaces.
Nelson's method is probably applicable to constructing
a total Hamiltonian in Fock space for the model con-
sidered here.

Another model which does not exhibit vacuum polari~
zation was considered by Eckmann.2 He considered a
three-dimensional model with the same singularity
structure as the two-dimensional relativistic polaron.
By expanding the resolvent in a Born series he was
able to obtain norm convergence of the resolvents
whereas we are only able to obtain strong convergence.
Frohlich,3 has shown that Eckmann's techniques apply
to the polaron model considered here.

Work on Nelson's model and Eckmann's model has
been extended in several interesting directions.
Cannon, 4 constructed the basic field theoretic objects
for Nelson's model while Frohlich,5 obtained field
theoretic properties for Eckmann's model. Albeverio$:7
has worked on the scattering problem for Eckmann's
model. Frohlich,8 has considered the infrared problem
resulting when the bosons have zero mass.

The techniques we employ do not involve dressing
transformations, perturbation theory, mass gaps, or
resolvent expansions and so are distinct from those
previously mentioned. The point of view taken here is
that one should be able to construct a total Hamiltonian
once one has a physical ground state. In realistic
models this is done via the Gel'fand-Naimark-Segal
construction but for the simple model considered here
this is not necessary. Thus while our results are not
as extensive as those already cited our methods hope-
fully capture the spirit of realistic quantum field theory.
Gross has taken this viewpoint in Ref. 9.

He has considered the case of relativistic free elec-
tron energy and three or more space dimensions. Let
@, be the set of all finite linear combinations of oper-
ators on ¥ of the form exp[iR(g)], where g is in L2(R¢9)
and R(g) is given by (2. 10). Gross chooses a C*-
algebra @ containing G, and finds a representation o of
@ on a Hilbert space ¥, and also a nonnegative self-
adjoint operator H on JC, and a sequence of cutoff
functions {f,} such that [H(f, XU ® A¥(f,)),v® BY(f)]
converges to [H(U ® o(A)¥w=, v ® o(B)¥«x)] as n goes to
“ in some subsequence of {1, 2, ...}, and where A, B
are in @, and U and v are in C_(R9). In two dimensions
it will be shown that one may take X = ¥ and that for
every k in D(H(w)), there is a {k,} with h, € D(H(f,))
and H(f,)r, = H(x)h.

The results presented here have been announced in
Ref. 10, '

2. ACUTOFF MODEL WITH FIXED TOTAL
MOMENTUM

A. Hamiltonians

Our purpose here is to define the Hp(f) of (1.8). We
follow Ref. 9 in making the definitions of this section.

Let § denote symmetric Fock space over §,; =
L2(R4, dk), where dk denotes Lebesgue measure on
d-dimensional Euclidean space,R4. In other words &
is the Hilbert space direct sum of §, = the n-fold sym-
metric tensor produce of &, and F, is the complex
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numbers: § = 23°_, §,. We will identify §, with the
functions in L2(R4'",dk,...dk,) which are symmetric:
§, = {g € L2R4'*): gk, ... k) =glk,qy - R pny

for almost every (kq,...,%,) in R4'# and every permu-
tationpof {1,2,...,n}}

By $” we mean the Schwartz space of rapidly de-
creasing, infinitely differentiable complex functions on
(R%)». Let & denote the vector subspace of ¥ consis-
ting of all g = 2%, g, such that g, isin $” and g, = 0
for all sufficiently large n. By F° we mean {Z};‘;O g. €
¥: g, €5, and g, = O for all sufficiently large .

For k in R4 we define the annihilation operator a(k)
as follows. D(a(k)) = §. If g is in § N T, then a(k)g,
isin 6§ N ¥,_; and is given by

(a(k)g, Xk, - .
a(k) is zero on F,. a(k) is then extended linearly. By

a*(ky)- ..a*(k)alk;,,). .. a(k,) we mean the bilinear
form on & X é’:

kyy) = nl2g, (R kg, k). (201)

gXh- (a(le].,,l). ..alk,)g, a(k].). .alkyh).
If v is in L2(R4'#), then the bilinear form
gx = [k, ...,k Nalk,, ). . alk)g, alk,). . . alk;)h)
X dky...dk,
defined on § x § is actually the bilinear form of a closed

operator on ¥ with core & (Ref. 9, p.9). We denote the
operator by

J ok, ..

For any self-adjoint operator, T,on §, let ¥(T)
denote its quantization, (Ref. 11, p. 223) y(7T) is self-
adjoint and on ¥, is the closure of

ket (ky). .. alk,)dky. . . dk,. (2.2)

TO®IR..®I+I®T®I®..0I+,.. +I®...@IT.

When T is multiplication by a nonnegative, measurable
function &, (in this case we will write T = M,), then we
will say Y(T) = fh(k)b*(k)b(k)dk, since for f and ¢ in
& N D(4(T)) we have

ATV, 8) = [ h(k)alk)f, alk)g)dk. (2.3)
The mass of the phonon is a positive number u, which is
fixed throughout this paper. The relativistic free phonon
Hamiltonian, K = (M) is given in (1. 3) and w is given
in (1. 4).

For each measurable subset B C R4 and any real ©
we define the local fractional energy operator

N_ 5= My xs), (2.4)
where y is the characteristic function of B. When
7 = 0, we write

No,p=Njp. (2.5)

N is “the number of particles with momentum in B”
operator. When B = R4, we write (2. 6)

N. g=N,. (2.6)
If 1= 0 and B = R%, we write
N, z=N. 2.7

Note that K = N,.
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If 7 is multiplication by the ith coordinate function,
k; then we let P, denote »(T) and write P = (Py, Py, ...,
P,). P,is “the phonon momentum in the ith direction”
operator For any positive number m, denoting the bare
mass of the electron, the contribution of the electron
kinetic energy to the energy of the polaron with total
momentum p is the self-adjoint, closed operator,
E,(p— P),where E is given by (1.2). For fe D
(E,.(p—P) N F, we have

(E (P — P)f)ky," -
=E, (b — Ry
X f(kp "';kn)’

T knd)
(2.8)

where p, and k ; are the ith coordinates of p and kj,
respectlvely

For g in §,; we define the smooth annihilation and
creation operators by

JZ(R)ak)dr
a*(g) = [ g(k)a*

For such g we also define
R(g) = (a(g) + a*(2)**.

R(g) is self-adjoint (Ref. 11, p. 231).

alg) =
2.9

A cutoff function is a real valued, infinitely differen-
tiable function f on R4 with compact support and satis-

fying f(k) =f(—F).
The Hamiltonian for the polaron of total momentum
b, bare mass m and cutoff function f is

P) +R(f). (2.11)

H ,(p)=K+E,(p—
For an explanation of the terminology see Refs, 12, 4,
or 13.

f (p) is a self-adjoint operator which is bounded
below (Ref. 12, p. 102). Let A (f, m, p) = inf (spectrum
Hf (D). The physical polaron mass is a positive num-
ber, mg, which will remain fixed throughout this paper.
The finite mass renormalized Hamiltonian of total
momentum p, momentum cutoff f, and physical mass m,
is H'(p) = Hy mg (p) — M f, my, 0) + m,. Instead of
H f(p) we will consider

H(p) = H)(p) — my (2. 12)

so that inf (spectrum (H (0))) = 0.

H,(p) is self-adjoint and it is known (Ref. 12, p. 102)
that
inf(spectrum H,(p)) = 0. (2.13)
Also [according to (Ref. 12, p. 102)] zero is an eigen-
value of H,(0) with multiplicity one. Let ¥, be a cor-
responding eigenvector with norm one:
Hp¥, =0,

ho,l = 1. (2. 14)

\Il is an infinitesimal rest state of total momentum zero.

Let G, be the set of all finite linear combinations of
operators of the form ¢i4£(¢) where g is an infinitely
differentiable function of compact support. Then G, is
an irreducible algebra and G,k is dense for any % in F.
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Let T be a closed operator from one Hilbert space to
another. A T-approximate sequence for vy in D(T) =
domain of T is a sequence {y,} € D(T) such that y, -y
and Tyn - T,.

A subset D C D(T) is a cove for T if for each y in D(T),
D contains a T-approximate sequence for y (Ref. 14, p.
166).

& is a core for
K + Emo(p _p),

m=12,..,

Lemma 2.1:
(1) K(p) =

(ii) N7/2K(p), T=1,

(iii)N”/zE (P‘“P), m=12...,7=1,
(2. 15)

m, /2
y TTg = 1,

(1v)N YN, 2 my,my=1,2,...

(v) N7P/2HL(p)+7v) m=1,2...,7=<17realf
a cutoff function

(vi) N2, m=1,2,...

(vi)N™2R(g), m=1,2,.

0
g €, D(NY).

Proof: The operators in (i)—(vii) are all relatively
bounded (Ref. 14, p. 190) with respect to K¢ for some
sufficiently large integer s. Thus it suffices to prove
that & is a case for Ks. Let §, ={g =2,2,4, € & g,
has compact support}. Then é’ is a dense set of analy-
tic vectors for K¢ and so is a core for K¢ by Nelson's
theorem (Ref. 13, p. 583). Hence & is also a core.

B. N; Bounds for fixed momentum states

The basis for the estimates in this section is the
following inequality due to Gross (Ref. 9, p. 23):
Il a(k,)- - - a(

Bl = M 1/(k) (k)1 k]
e

+ Dogl(ky, .. k) A(@)H (ORI,

where 7 is a positive integer, a is a subset of {1,2,.
n}, the 7 runs over all such @,k isin §,fis a cutoff
function, A(a) = JeoLaz(kj),(g{n (k) = w(k) 1 and where
g% is defined inductively by

(2. 16)

gy lky, .. k)
n+l
=(iZ:,1 w(k,.)>-1 ;—Z;:& Ife ) gnky, ... ke Ry y)
unless & = {1,...,7 + 1} in which case g2 Uy, - v vy gay)

=[2274 wik, )] 1

(where a A over an element means to omit that element).
The proof of (2. 16) is based on the nonnegativity of H(p)
and the commutation relations of H( p) with a(k). We
shall shortly return to this technique in the proof of
Lemma 2.12,

For the remainder of this section f will be a fixed
cutoff function and we will write Hf(p) = H(p), ¥, =7,
and Emo =E.

Lemma 2.2: V¥ is in D(K5/2) for every nonnegative
integer s.

Proof: The inequality

E(p—hy— -+ —k,) = wlky) + - %)

+w(k,) + 1pl+ myg
2.
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shows that K (m*2)/2 and K™/2K(0) are relatively bounded
with respect to each other. Thus

D(K m2¥/2) = D(K™/2K(0)). (2.18)

By definition, ¥ is in the domain of H(0) = K + E(— P) +
R(f) — M f, my, 0)I . The lemma is therefore true for

s = 2 and so for s = 0, 1 also. Inductively, assume the
lemma istruefors = 0,1,2,..., ¢

That is, we have
(i) ¥ € DK2).

Since H(0)¥ = 0, we have
(i) ¥ € DK -V/2H(0)).

Since K ¢-1Y2R(f) is relatively bounded with respect
to K*/2, it is also true that

(iii) ¥ € DK /2R (f))
Subtracting (iii) from (ii) gives
(iv) ¥ € D(K¢-D/2K(0)).

Now we are done with (2. 18).

Lemma 2.3: For any 7= 1,[|N12¥| = fB |f(k)|2
x w(k)T-2dk.

Proof: For any & in § we have, by (2. 16), that
I NVghl = (N, gh, 1) = ([ w(k)(alk)h, alk)h)dk)1/2
= (pw(k) 17 (k)| 2wy 2dk) /2] R 1/2
+( fB w(k)T-2 a(k)H(0))|2dk)1/2,
Since w(k) = u we have shown that for any % in &

INH3RI < (f |f(R)| 20(k)T-2dk) 12| )| + 72 I|N1/2H((0)hu ?
2.18
We saw in Lemma 2. 2, that ¥ is in D(K3/2) so by Lemma
2.1 we may choose a K3/2-approximate sequence, {#,},
in &, for ¥. N1/Z is relatively bounded with respect to
K3/2, NU/2H(0) is relatively bounded with respect to
K1/2H(0) which is relatively bounded with respect to
K3/2, Consequently N1/2h, converges to N}/2 ¥ while
N1/2H(0)r, converges to N1/2H(0)¥ = 0. Thus the
lemma follows from (2. 18) by taking the limit 2, —» ¥
and recalling the normalization || ¥|| = 1.

We again follow Ref. 9 in making the next definition.

Definition 2.4: We have already observed that &
is a core for N1/2, where s is any open set in R4, Thus,
if & is in D(N1/2), there is a sequence {h,} C & such that
h, = h and N1/2 > N1/2h. The function & = a(h)h,, is in
L2(S, ) since %, is in §. since

INY2h |2 = (N h,, b)) = fs I a(e)r, )2 dk, (2. 19)
it follows that {a(')hn} is a Cauchy sequence of functions
in L2(S, §). Thus, there is an element of L2(S, ), which
we denote as k = a(k)z or a(*)k or a(k)h, such that a(*)
a(*)k, = a(-)h in L2(S, F). Furthermore,

IN2h| 2 = [ a(k)nli2dr. (2.20)
Note that a(*)2 is independent of N1/2-approximate

sequence, {#,} C &, is used. If & happens to be in N1/2,
0 < 7,then 2 is also in N 15/2. Choosing an N,%/sz-sequence
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for h in &, {k,} and noticing that this must also be an
N 18/ 2 approximate sequence gives that w(*)7/2a(*)s, con-
verges to something while a(*)2, converges to a(*)k.
Since multiplication by a real continuous function is a
closed operator in L2(S, §) we find that, for any % in
N1/2 ig relatively bounded with respect to N1/2 for
720, it is also true that for any % in N1/2, 7 < 0
INY2R)2 = [ w(k)| k)l 2de. (2.21)
Definition 2.5: We now define a sequence of approx-
imate 6-functions. Put

for x = 1/n,

0al0) = cl) exp[(lx 2 —n2)72] \/n, (2.22)
where

ey =, [, eml(ix]2 —n-2)1)ae. (2.23)
for & in R4 put

8, %) = 0,(x — k). (2.24)
These functions satisfy

b, € CZR9), (2. 25)

0=5,(x), forallxinR¢ (2.26)

6,00, = [ 8, (x)dx = 1. (2.27)

Given any open set U containing the origin in R¢, there is
an integer M(U) such that » > M(U) implies support
(8,) C U. (2.28)

Lemma 2.6: Fix v € R%. For h in D(N1/2) the func-
tions &, given by &,(k) = a(b, ,.,)k are in L2(S, ¥) and

limh,(*) = a(* + v)h in L3(S, ), (2. 29)

for any bounded measurable S C R¢,

Proof: First we remark that since 2 € D(NV/2), k
is also in D(N 142) for any S, and consequently a(‘)z is in
L2(S, F). By a(* + v)2 we mean the translate of a(*)h by
— v, Thus a(* + v) is in L2(S, T) also. Moreover, trans-
lation is continuous in L2(R?, F) so whenever v and z are
sufficiently close in R4, then |l a(- + v)h — a(- + 2)h| is
arbitrarily small.

Now let g € L2(R4), Then the function & ~ g (k)a(k)h
is measurable from R4 to ¥. Since

J1g®atomnl de < [ g ae)ill de < N gll 5 N V2],
(2.30)

it follows that the function g (-)a(*)k is strongly inte-
grable. Next recall that & is a core for N1/2 and that
A(g) is relatively bounded with respect to N1/2, Con-
sequently, we may choose {#,} in § such that
(i) h, —h,
(ii) Nl/zhn - N1/2p,
(iii) a()k, = a(*}h, in L2(R, F),
(iv) a(gh, = a( .
Furthermore, from (2. 30)

™) [ gk)ah,de - [ (RatEhde.



194 Alan D. Sloan: The polaron without cutoffs

Thus, from (2.9)
a(gh = lim a(gh, = lim [ z(Rakh,de = [ g #)a(k)dk,
Therefore we have verified that

for k in D(N1/2) and g in L2(R%), (2.31)

the function g(-)a(*) is strongly integrable and a(g) =
[ g (R)a(k)ndr.

In particular

ho(k) — h(BY) = [ 6, . i(D)a(DYhdp — [, . D) pIhdp

=[5, (bNa(p + Bk — a(p + kL)R)dp.
(2.32)
Thus

Il 7, (k) — B, (RN 2 < [ 8,0 alp + k) — a(p + KOR||2dp

is arbitrarily small by the remarks at the beginning of
this proof and (2. 27). The functions %, are continuous,
hence weakly measurable and by the separability of F,
strongly measurable. From the inequality

M, Mg = 15, , 1 12 pey INV/2RIIg (2.33)

it follows that &, (-} is in L2(S, F) for any bounded
measurable subset S of Re.

Finally we use (2. 27) to make the estimate
S a6, pu)h — alk + v)kldk
= [oa S5 8.0V alk + p + v)hl2dRdp.

This estimate along with the continuity of translation in
L2(R4, F) gives the desired results.

Definition 2.7: Let X be a separable Hilbert space
and S a measurable subset of R%. Let % be in L2(S, i)
and U a unitary operator on 3. We define a new function
Uh from S to X by

(UR)(R) = U(h{k)). (2. 34)
Uk is measurable since if g is in 3 then & = (Uh(k), g) =
{(k), U"1g) is measurable. Furthermore || Uk| = || 2l
since | (UR)(R) = | ~()| and UU- = h so U defines a
unitary operator, which we also call U, on L2(S, 3} by
U:h = Uh.

Lemma 2.8: Let h be in D{N) and g in L2(R4). Then
eiR @Y is in D(N1/2) and for almost every k in R4 we
have

a(k)eiR &R = ¢iREa(R)h + ig(k)eiR@h, (2.35)

Proof: First let & be in FO. Put E, = 252 (i%/s!)
Rg).

The commutation relations

(a(v), a*(2)] = (2, ),

(2. 36)
[a(v), a(z)] = 0O
combine to give
[G(U),R(Z)] = (2, v) (2.37)

valid on §90, for v, z in L2(R9).
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(2. 37) gives
(1) «vE, =E,a(v)+ ig,E,
also valid on §°.

0 is a set of analytic vectors for R{g) so

(ii) E,a(v)h — eiB&a(vn
and
(iii) i g, V)E ,.h = i(g, V)eiR @R,

Since a(v) is a closed operator, (i)~(iii} show that for
hin §9, iR is in D(a(v)) and

a(v)eif(@h = eif&g(v)h + i( g, V)e B &h, (2.38)
Since 0 is a core for N1/2 and since N1/2 relatively
bounds a(v), it follows from (2. 38) that if # is in D(N1/2)
then iRk is'in D(a{v)) and (2. 38) is valid for % in
D(Nﬂz)_

[We have again used that a(v) is closed.]

Now assume % is in D(N). Then by (Ref. 9, p. 64)
eiR(&) is in D(N) € D(N1/2), Replacing v by 8, , in
(2. 38), taking limits as # — « in (2. 38) and using (2. 29)
shows that the square integrable function & — a(k)e?X&h
equals the function & — ¢ R(&a(k) + ig{k)e*R &N, This
is (2.35)

Lemma 2.9: Let g€ F, = L2(RY) be in the domain
of N1/2. Then N1/2¢iR(® ig relatively bounded with re-
spect to N1/2, In'particular, if k is in D(N1/2), then
¢*R& is in D(N1/2) and ’

| N}/2eirem]| < INL/2H]| + I NZ/2g|l || 1]l . (2.39)

Proof: First let h be in &. Then % is in DN, ;) so
by (Ref. 9, p.64), e*R@h is in DN, ) C D(N}2). Accord-
ing to (2. 22) we may write

(1) WN2eiB@h|2 = [ w(k)" la(k)nl2dk.
By Lemma 2.28 we have the estimate

(ii) INY2eiR@n|| < (f (| w(k)"2e R Ea(k)h
+ | w(B) 2ig(R)eiR@n])2dR)1/2
= INV2n| + INV2g| Rl

Since & is a core for N1/2, since ¢*#(#) is unitary and
since N }/2 is closed, we are done.

Definition 2.10: Put Rf(p,r) = (HLp) +r)1Lfor p
in R2,» > 0. In this section where we have fixed the
cutoff function f we will write R(p,7) = R p,7).

Lemma 2,11: ¥ ge ¥, = L2(R9) is also in D(K),
then R(p, r)eir(&%¥ ig in D(K3/2),

Proof: From the previous lemma with 7= 1,S = R4
we find that iRV is in D(K1/2) so that R(p,r)eR (¥
is in D(KY2(H(p) + 7)). From (2.11) and (2.12) it is
also true that R(p, 7)ei &N is in D(K) C D(K1/2). Con-
se‘}uently,R( b, 7)eiB&Y is in D(KY/2(H(p))). Since
K1/2R(g) is relatively bounded with respect to K, we
also have that R(p, »)eR(®V¥ is in D(K1/2R(g)) and
therefore in D(K1/2K(0)). We are done by (2. 18).

Lemma 2,12: for h in D(NYZ (H(p) + 7))

I NM/2R) = ( fs w(k)-2( fR))2dRY/2| R + lll\frl_/zfs(H ®) + M.
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Proof: On & the following computations are valid.

H(— k + p)a(k)
= a(R)H(— k + p) + [H(— k + p), a(k)]
= a(R)H(— k + p) — w(k)a(k)
~fik) + [E(— k + p — P),a(k)] — alk)H(p) + a(k)H(p)
= a(kE(— k + p —P) — E(p — P)) — w(k)a(k) — f(k)
+ [E{— k + p —P), a(k)] + a(R)H(p). (2.40)
However,
ak(E(—k +p+ P)—E(p— P)) = a(R)E(—k + p— P)
— E(p — k — P)a(k) = — [E(— &) + p — P), a(k)].
Thus on &

W=k + p) + 7)alk) = — w(k)a(k) — F(k) + alk)H(p) + 7).

(2.41)
From (2. 13),H(— k + p) + 7 is nonnegative so
0 < ({H(— & + p) + 7)alk)h, a(k)k)
= — w(k)| a(k)l|2 — f(k)h, a(k)h)
+ (a{R)H(p) + I, alk)h).
Thus
late)rll = | (k) lw(R) 2IRY + la(R)H(p) + )]l w(k)'lzz 42)

We are done with (2.41) and (2. 21) or {2.22),for % in &.
Since & is a core for N1/3 (H(p) + r) and since N2 is
closed, we are done. )

Lemma 2.13: suppose g € F, N D(NYZ ) for some
7= 1, Then

INL2qll = (1 + 1/7)INYZ Al + IN22 el
where g = R{p, 7)eiR{&ng,

Proof: By Lemma 2.11 ¢ € D(K3/2), Let{g,} C &
be a K3/2-approximate sequence for g. Since N 172
YI( p) + 7) is relatively bounded with respect to K372,
g,} is also a N1 2 (H(p) + 7) approximate sequence.
Apply Lemma 2. 12 to g, and take limits. We may con-
clude that {N}/2 ¢, } is a Cauchy sequence. Since N1/2
is closed we may also conclude that ¢ D(NY/2) and '

INYV2qh = INLZ 7l lgh + INM2 (H(p) + r)gll. (2.43)

The desired result now follows from Lemmas 2.9 and
2.3.

Remarks on Section B:

(a) Lemma 2.2 implies that ¥ is in D(NS) for all in-
tegers s. In fact, ¥ is an entire vector for N, (Ref. 15,
p. 150).

(b) If we write ¥ = 33 ¥ where ¥, is in F,, then
the finite particle components, ¥,, of ¥ are continuous
functions and we can use (2. 1) to define the action of
a(k) on each ¥, and so on ¥, (Ref. 15, Sec. IIL. 2). Then
(2. 16) is valid for % replaced by ¥ or ¥ and the last
sum in 2. 16 is zero since Hf(O) = 0. This gives further
estimates:
2

W, (%, .. k) = @)y V/2 igllf(ki)'w(ki)’l. (2.44)
{c} Using the just mentioned variation of (2. 16) one can
show that ¥ is in D(N}/2) for all 7. Then one can show
that Lemma 2. 13 is valid for all r also.
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{d) Nelson's method of mass renormalization! was
used in (2. 12) rather than that suggested by Gross.®
Frolich16 has shown that the method of Ref. 9 leads to
a trivial dynamics whereas the dynamics here have a
momentum dependence as will be proved in Theorem
3.11.

C. Sobolev bounds for fixed momentum states

We again follow Ref. 9 and make the next definitions.
Let CZ(S, ¥) be the infinitely differentiable functions
from S to ¥ with compact support for any open subset
S of R4. We say that 2 in L2(S, §) is weakly different-
igble in L2(S, §) if there are functions &, in L2(8, ¥),
i=1,2,...,d,such that for all ¢ in CZ(S, F) we have

_ (3¢ —(o.h
Ga, ) o = 1), (2.45)
where k; is the jth coordinate of & = (k,...,%,) and
where, for any v and 2z in L2(S, ),
(0, 2), = fs (v(k), 2(R))dk. (2. 46)

We denote 4, by ah/ak}.. Recalling Definition 2. 4, we say
that 7z in D(I\} 152) is weakly diffeventiable if k — a(k)h is
weakly differentiable. We define the Sobolev space

FYS) = {h € D(NV2): h is weakly differentiable}. (2.47)
F1(S) is a Hilbert space in the norm |-||  where

- / * 9
112 = Whls + Iny2als + Ly S| " a(kyh|2d. .

If k ¢ $(S), then put [kl = «.

In Sec. C, f will be a fixed cutoff function. We will
write Hf(p) = H(p),\lff-: ‘It,Emo = E and Rf(p,r) =
R(p,7).

Proposition 2.14: [Gross,Ref. 9,p.34]: For any
open set Sin R4, Vis in FYS). I ¥l = 1,then

)2 2
el =1+ [ ti(;;zdk +8d J, —L}%dk +2 fs—-—:z)zdk,
(2. 49)

where Vf denotes the gradient of f.
2l Lemma 2.15: Fix a vector ¢ in R4 and normalize
¥ = 1.

Let /be a bounded function on S and let g be in CT(RY).
Then

I, Ap)la(k + c)ei®eO¥ — a(k)ei®eN||2dk

=8lcl2 | A(k) if(k+c)b2dk
S w(k)2 w(k + c)2

+2 fsﬁlg—)zlﬂk)wﬂk+ c)l2dr

+2 [, LR) gtk + ¢) — glk)]2dR.

Proof: Let @ be the left side of the inequality in
the statement of the lemma. Then by Lemma 2, 8 we
may write

Q = [, Lr)2llei®® (a(k + c)¥ — a(k)F)||2
+ 2lli gk + ) — g(k))eimeNy||2}dk.

Since e!R{&) ig unitary and ¥ = 1, we have

Q = [, Lk2llalk + c)¥ — a(k)¥|2dr
+2 [, AR) gk + ¢) — g(k)| 2dR.
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The proof of Lemma 3.7 in (Gross, Ref. 9, p. 33] shows
that
Jupl a(k + c)¥ — a(k)¥2dk
k) + cl2
= glclz [4B) k) + el dk
wk)2 w +c)2
2 [ A(k)
75 w(k)2

Combined with the previous inequality this finishes the
proof.

If(R) — f(k + c)|2dk.

Lemma 2.16: Fix ¢ in R? and g in CZ(R?). Then
for any open set S in R¢ we have
[, la(k + OR(p,7)eiR@¥ — a(k)R(p,r)eiB @V 24k
= 12]c2(1 + 1/7)p2INA2,_ fl + 121 cl2IINY2_ glluw?
L3 B — s+ ol
r ©° w(k)2
Ak + c)]2
+oalelz [, —TEE I
wik + c)2w(k)
lAk) — flk + ¢)]2
+6 /. Ak) — ) i

w(k)4
— 2
l. lglk + c) — g(k)| b
w(k)?

Proof: Leth bein . If k, k1 are in R4 and if we
put da = a(kl) — a(k) then

w(k) (da)rll = 21k — k1| || a(k1)Al
+ |fie) — ARV IRl + | (sa)XH(p) + r)nd.

The proof of this inequality is essentially given in
[Gross, Lemma 3. 6, pp. 32-33]. All the reader need do
is replace H(— k) by H(— k — p) + 7, replace E(— P + q)
by E(— P + q + p) where ¢ may be 0, k, or k1, and re-
place H(0) by H(p) + » whenever these operators occur
in the cited proof.

¥ is in D(K) by definition so ¢iR(&) ¥ is in D(K1/2) by
Lemma 2.9 and, putting ¢ = R(p,7)ei®(&)¥, we have

(2. 50)

() g€ DEV2H(p) + 7).
But
’ (ii) ¢ € D@H(p) +7) C DIK) C D(K/2)

so from (i) we deduce
(iii) ¢ € D(KY/2H(p)).

Since K1/2R(g) is relatively bounded with respect to K
from (ii) we see that ¢ is in D(K1/2R(g)) and so from
(iii) it follows that

(iv)
From (2. 18) it now follows that ¢ € D(K3/2). Since & is
a core for K3/2 and since both N1/2 and NY/2(H( p) + 7)
are relatively bounded with respect to K3/2, we may

choose a K3/2-approximate sequence, {#,}, for ¢,in &
satisfying

q € D(KY/2K(p)).

(a) h, =g =R(p,r)eiR&T
(b) a(*)2, = a(-)q in L2(S, §)

(¢)  a(-YH(p) + )k, = a()etB&OV¥, in L2(S, F).
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Putting k1 = & + c and k = £, in (2. 50), we find

| ate + Y, — a(kh, | < weyH2lcl Ia(k + c)hr, |l
+ |fik) — fik + )l | &, |l
+ ll(a(k + ) — a(R))H(p) + 7)1}
(2.51)"

Taking the limit #» — « in (2. 51), using (a), (b), (¢) above,
and the fact that for any nonnegative numbers o, 8, y
it is true that (& + 8 + )2 < 322 + 382 + 3,2, we find

[, la(k + c) — a(k))qll2dk

dk
< 12lcl2f, lla(k + c)qll2 WO
+3/ |f(k)—f(k+c)|2u—qu—2dk
° w(k)?
+3LHwk+a—amwme2HB; (2. 52)

If we replace the first integral with 12u~2|c| 2| N1/2q||2
and estimate this by Lemma 2. 13, if we note that

lgll = 1/rll e’ ¥| = 1/r and if we use Lemma 2. 15
to estimate the last integral, then we obtain the desired
inequality.

Lemma 2.17: Let h be in D(N1/2).

t 1
@=§%sw;gﬂﬂww+¢@)—dMWWM<w
for j=1,2,...,d, where e, is a unit vector in the jth co-

ordinate direction, then % is weakly differentiable and

“5%: alk)h

PusHy =45

Proof: The proof of this lemma can be found in the
proof of Proposifion 3.8 of [Gross, Ref. 9, p. 35].

Proposition 2.18: Let S be an open set in R4, fix

p inR4,7 > 0 and g in CZ(R4). Normalize || ¥]} = 1.
Then R(p, 7)eiR (¥ is in the Sobolev space F1(S) and

IR(p, @2 =L+ (14 1) [wagas| + | wifae]
12t + %) u-z“Mlz{gfll + 12" Ny2 gl

+ifs lvflzdk+d(24) I ————If(k)lzdk

r w(k)? w(k)®
lvrl2 |vgl2
+6 J, T dk + 6 |, pery

Proof: This follows from Lemmas 2, 17, 2, 16 and
the fact that

IR(p,7)eiB@¥| = (1/r)l eR@¥] = I/ ¥ = (1/7).

Remarks on Sec. C

(a) Proposition 2. 14 asserts that ¥ is weakly differen-
tiable. In Ref. 15 it was shown that the finite particle
components of ¥, ¥, € F (¥ 2,2 ¥, ) are actually
differentiable functions and the map % — a(k)¥ is dif-
ferentiable from R4 to &.

(b) As suggested by Lemma 2. 15, e?R2(&¥ is weakly
differentiable if g is in CZ(R?) and

2 . ) )
—— akéiB (T = gik(8)
o, & AR T

i i

3
a(k)¥ + "‘a‘kg (R)eiR@T.
i
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3. REMOVING THE CUTOFF IN TWO SPACE
DIMENSIONS

For this last section we will restrict our attention to
the case of two space dimensions, d = 2. We assume the
normalization || ¥ I = 1.

A. The case of fixed total momentum

In this section S = S, will denote a cube inR2: 5,
ey, k)t (B I<7,i= 1,2} for» > 0. By & .(S) we mean
the n-fold symmetnc tensor product of LZ(S) By F(S)
we mean Fock space over L2(S): §(S) = 2,%, § (S)

We will identify §,(S) with a closed subspace of g,
¥, (R2) by extending functions initially defined on S" to
be zero on R2-# — §#_ F(S) is also identified with a
closed subspace of ¥ in this manner. It now makes
sense to write [[2],, where % is in F(S) and ||| is given
in (2.48). Let SYL2(S)) = {n  F(5): flrll < =}, With
norm |i-ll.

Lemma 3.1: Bounded subsets of F1(L2(S)) are pre-
compact in ¥(S).

Proof: According to [Gross, Ref. 9, p. 37] there is
an operator L on F(S) with domain D(L) = F1(L2(S))
satisfying

iz, = 1 Lal

for all 2 in ¥(S).

Let B be a bounded subset of $1(L2(S)), Then by (3.1)
LB is bounded in F(S) and since L1 is compact, L"1LB =
B is precompact.

Let P(S) be the projection of § onto F(S). On &,
P(S) = L. On ¥ _.P(S) is just multiplication by X, the
characteristic function of S*. If & is in & then

) (3.1)

a(k)P(S)h = | POYGER keg
If kis mD(N1/2) h=)3h,h, €F, then sois ) x,h,=
P(S)k, and [N1/2P(S)il| = [ N1/2k]). "Thus, if & is in
DN/ 1/ 2) then so is P(S): and a(k)P(S)h P(S)a{k)h for
almost every k in S where if g: R2 — F then (P(S)g)k) =
P(S)g(k). Since P(S) is bounded P(S) leaves CT(R2)
invariant and

P(S}“*g = S%—P(S)g
for all gin C"@(R 2). Consequently, if # € F is weakly
differentiable then so is P(S)k and for almost every %
in S,

2 _ psy -2
—é—k—ja(k)P(S)h = P(S) ak}. a(k)h.

Corollary 3.2: Let {f,} be a sequence of cutoff
functions satisfying

sup 17,1l 26, < (3.2)
and

sup 19/, 1 ) < (3.3)
Fix g in C(R2),p inR2 and r > 0.
Then the sequences

{P(s)y¥, } (3.4)

and
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{POWH, () + 7Yy leiR@y, ) (3.5)
are precompact in .

Proof: The proof consists of Lemma 3.1 along
with the estimates of propositions 2. 18 and 2. 14, and
noting that F(S) is a closed subspace of ¥.

Lemma 3.3: Let{k,} C § and suppose

sup {IN1{21, ||} < (3.6)

for some 7 > 0. Then for every € > ( there is a cube
S such that for all »
I(1— PSHR,N < €. (3.7)

Proof: Let M; = sup IN1/2h, ) and let € > 0 be
given.

w(k) is a positive radial function which increases
monotonically to « as |2]— =, so there is a cube S such
that for k outside S,

w(k)" > M3fe€2 =M (3. 8)
Put S*¢ = R2” — §* and
S2=R2x.,, XR2ZXR2—-§XR2X... XR?, (3.9)

where of the » factors in S% only the #th is R2 — S. Then
N — POWN2 = D5y [ o VhmB) 12dR
=D Lng | n wlk M1 h,, (k)| 2d%
= INY2h,|2M1 = MIML = €2,
where & denotes a generic element of R*"2 with com-

ponents (k{,...,%k,),k; € RZand h, = 252 ok, . with
€9,

Covollary 3.4: Let{ f.1 be a sequence of cutoff
functions satisfying

sup [, w(k)"2|f, (k)] 2dk < o, (3. 10)

for some 1> 72> 0. Then for every € > 0 there is a
cube S{¢€) such that

i — PS(ein, B < €

for all # where either {k,} = {¥, } or {i,} =
{(H,«,ép) + 7y leiR @Y, |or ¢ Zc=®2f,r > 0 and
pE

(3.11)

Proof: The proof consists of applying the previous
lemma with the estimates of Lemmas 2. 13 and 2.3 and
the hypothesis (3. 10).

Proposition 3.5: Let {f,} be a sequence of cutoff
functions satisfying (3. 2), (3. 3) and (3. 10). Fix g in
CZ(R2),p inR2 and 7 > 0. Then, in every subsequence

Agof {1,2,...,} there is another subsequence A C A,
such that

{¥,:n € A} (3.12)
and

{R,(p,7)etR&¥,: n € A} (3.13)

are convergent sequences in (R 2), where we have put

¥, =¥, andR,(p,7) = (H, (p) + ).



198 Alan D. Sloan: The polaron without cutoffs

Proof: For each cube S and real » > 0 we may, by
corollary 3. 2, find a sequence A(g, p,7,S) C A, such that

{P(S)h,: n € Mg, p,7,5} (3.19)
are convergent sequences in ¥ where either {1,} = {¥,}
or {1} = {R ,(p,7)ei?@¥ }. By the diagonal process
and the fact that 0 < a < b implies S, C S, which implies
1P, )x!l = |P(S,)Xll, we may find a sequence A(g,p,7)
such that

{P(S,: n € A(g; p,7)}

are convergent in ¥ for every cube S.

Let € > 0 be given. By corollary 3.4, 1let S be a cube
such that

I — PSR, < e/4.
By (3. 15) choose an N such that »n, m > N imply

| P(S)r, — P(S),, || < e€/2. Then, for n,m >N, llh,—h,| <
PSR, — k)™ (1= PSR, + I~ PO, I < €.

(3. 15)

{(3.16)

Lemma 3.6: Let A be a subsequence of {1,2, -}
such that {¥_:7 € A} converges to a limit . If
{R“( b, r)eiR’tB)\I'ﬂ: necA }Vconverges for some infinite
A, C A then so does {Rn?p,r)eiﬂ(g)\lfm: n € Ayf. Further-
more both limits agree.

Proof: Both assertions follow from the triangle
inequality and the estimate |[R ,(p,7)etR & (¥, — ¥ )|
= 17y, — v,

Definition 3.7: Let g be a C*, real function onR?
that is one on (— 1/2, 1/2), takes values between one and
zero and vanishes outside [~ 1, 1], For each positive
integer m define g,, on R by

Mifx<m
Enl®) =i0(1/8 + x — m) if x = m.

Then g,, is C%, is one on (— «, m), takes values between
one and zero and vanishes outside (— », m + 3/4). We
now define the realistic cutoff functions f,, having real
coupling constant A, by

Ful%) = A(x)V2g, (121

for x in B 2. Note that:

(3.17)

(a) £, is a cutoff function;

(b) support (f,) Cix: Ixl <m + 1}
(€) (%)= ro(x)t2if (x| <my
@) 1f )= xw(x) 12

{(e) f,, hasthe same gign as X;

(f)  sup sup Hasax; fulleo < o

(g) suplivf, !l , < = for any bounded measurable
n L% (S)
subset S CRZ;
(h)  sup £, ;2 (5, <  for any bounded measurable

m
subset S CTRZ;

(1) sup INY27,lI2 <o for any 7 < 1.
m
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Of  (a)~(i) only (i) requires a proof:
INY2 f, 2 = [, wik)T £, (k)2dk
=22 f0°° foz” (r2 + p2)C-3¥2rdogr

_2’_7.,.ur-1 it 7< 1.
1—-7

A2

Thus {,} satisties (3. 2), (3. 3), and (3. 10). For the rest
of Sec. 3,{7,} will denote this particular sequence of
cutoff functions. We will also put ¥, = \Ilf“,Hf”(P) = H,(p)
ﬁndil‘li,,(p,r) = {H,(p) + 7)1, Normalize so that

¥l = 1.

Theorem 3.8: There is a subsequence A in every
sequence A, C {1,2,...} and a bounded operator R (5,7)
for each p in R2 and complex 7 not in (— =, 0] such that

(i) },‘.,“30 ¥, exists; we let ¥, denote this limit,
neEAM “ ‘I’oou = 1;

(ii) strong-limit R ,(p,7) = R(2,7).

7 -0

nEA
Furthermore, if 7> 0,R (2, 7) is both self-adjoint and
nonnegative.

Proof: By proposition 3.5, in any sequence A, we
can find, for each p inR2,» > 0 and g in CF(R2), another
sequence A(p,7,g) T A, such that the sequences (3. 12)
and (3. 13) converge. Choose a particular p,,7,, and
g, and let ¥, = lim {¥,: 7 € A(pg,7o,2,)}. By Lemma
3.6 we have o

Lim R ,(pg, 7o)t f&) ¥ = im R (P, 7 o)e 2 &)Y,

nEA(Pg.T0+80) R EA (Pg.7oo) (3' 18)

Let J be a countable dense subset of & consisting of

finite linear combinations of elements of the form

e B @&, g e CP(RE). Let ¢iR(&@¥,, € J. Then, by

the diagonal process we can choose a sequence A(p, )

of A(pqyr 7o, &p) such that
lix?oRn(p,r)v exists, (3.19)

REA(D.T)

for all v in J. Since {R,(p,7)} is a sequence of uniformly
bounded linear operators converging strongly on a
dense set we may conclude

LimR AT (3.20)

AEA(D.T)
exists for all 4 in ¥. The set of all complex numbers,
¢, such that (5,(p) — ¢)™1 exists and are uniformly
bounded is open in the complex plane [Ref. 14, 427}, and
contains all ¢ not in [0, *°) because the H,( p) are non-
negative, self-adjoint operators. Consequently, this set
of boundedness [Ref. 14, 427] is connected. Fix p and
let A(p) = A(p,7,) for some v, > 0. The set of all ¢'s
such that {(# A —oylin e A P)} converges strongly
is known to be a union of some of the components of
the set of boundedness, [Ref. 14, p. 427]. In this case,
the set of boundedness is itself the only component and
so the set of complex ¢'s such that {(#,(p) — ¢)"1}
converges strongly is either empty or is the set of
boundedness. Since — 7, is in this set it can't be empty
and we may conclude that

UmR (p,7)h (3.21)
READ)

exists for all complex » not in (— «,0} and 2 in .
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Let @ be a countable dense subset of R2. By the dia-
gonal process we may choose a sequence A such that

UmR,(p,7)h
nEA
exists for all p in @ and complex 7 not in (— =, 0],

Let € > 0 be given. Put a(r) =r"1ifr > 0 and
a(r) = |Im(r)|~1 if » is not real. Let p € R2 be arbi-
trary. Choose g € @ such that |p — ¢! < ¢/3a2[lk|.

Then the resolvent equation

(3.22)

R (p,7}—R,(q,v) =R, (p,*E(q — P}~ E{p — P))R,{q,7)

and [ (E{q) — E(p))**l| < |p — ¢! give the estimate
(R ,(»,7) —R,(g,7)rll < €/3. Choose N so large that
n, m > N imply (R ,(4,7) — R, {g,7)k]l < /3. Then
along with the triangle inequality and the previous in-
equality we find that for n, m > N, |(R (p,7) —

R, {(p,7)k] < € so that

Lim R (5,7
neA

exists, for all p in R2, complex » not in (—, 0} and £ in
¥. We define

R o o, ) = }}_{&Rn(p,f)}l.

nEA

R (P, 7) has norm bounded by ofr) since this is true of
each R ,(p,7). If r > 0, then R(p,7) is symmetric and
nonnegative since each R ,(p,7) is.

Lemma 3.9: Stx;gng limit ¥ R (p,7) = [, uniformly
7>
r real
for p in compact subsets of R2,

Proof: First we give the proof for p = 0. If suffices
to prove convergence on the set J of Theorem 3.8. Let
hed.

Then
h = }gghn,where h, = (ei®@ + ... + etRlm)¥
neEA
for some g, € C(R2),i=1,...,m. Note that

R,(0,7)H (O, =k, —¥R _(0,7)1,. Since k, = 4, it
follows that R ,(0,7)H,(0)2, converges for n € A and

ﬂliﬂ (d,(0) + vy H, (0, ]| = 1/ sup IH (O, 1. (3.23)

By (Ref. 9, p. 66), (3. 23) yields a number « > M > 0 such
that

l1im R (0, »)H (O)k, || < 1/7M. (3.24)

Next observe that |R (0,7 —R,(0,7)k, ]l < |lh —h, |l =0
so

LmR,,(0,7)k = lim R ,(0,7)k.

AEA REA
Consequently,

v limR _ (0,7)k = lim &, — lim R {0, 7)H (0},
n—>00 n—o0

700

= h — lim R ,(0,7)H (O,
700

and by (3. 24)
lim 7 R (0,7)k = h.

¥ =00
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Notice that from the resolvent equation,
IR (p.7) —R,(a,s)| = |(p—q)/(rs)|. Taking the
limit n > ©,n € A gives
IR ol £,7) — R la, s) =lg — )/ (r-s)l. (3.25)

The observation [[7(R o(£,7) — R (0, ")l < |p/7} finishes
the proof.

Corollary 3.10: The null space of R ( p,7) is{0} for
all 7 not in (~ *, 0] and p in R2.

Proof: The null space of R(p,7) is independent of

v and R(p,r) satisfies the resolvent equation (Ref. 14,
p. 428),

Roo(p{r) *Rw(P,S) = (S —'r)Roo(pﬁr)Rao(p, S)'
If R oo( p,7)k = O for some X then }H&V Ro{p,7)h = 0. By

r real

(3.26)

the previous lemma # = 0.

Theorem 3.11: For each p in R2 there is a self-
adjoint operator H(p) such that R(p,7) = (Ho(p) + 7)1
for all ¥ not in (— <, 0]. H(p) is nonnegative. 0 is an
eigenvalue of H(0) with ¥, as an eigenvector.

D(Hoo(p)) = D(Hoo( g)) and [Hoo(p) — Hoo(‘l)]** =
[E(p — P) — E(g — P)]** is bounded.

Proof: By Theorem 3.8 and Corollary 3. 10, there
is a closed operator H.(p) such that (H_(p} + 7)1 =
R (P, 7) for all » not in (— =, 0], (Ref. 14, p. 428). For
each v > 0, H(p) + v is symmetric since Ro(p,7) is
self-adjoint. Thus, H (p) is symmetric and since the
spectrum of H.(2) lies in {0, <) we may conclude that
H ( p) is both nonnegative and self-adjoint (Ref. 14,
p.271).

(Hool0) + 7)o = HMR,(0,7) ¥, = lm ¥, /7 = ¥/
”EA nEA

Thus ¥, is in the range of (H(0) + #)"1 and so in the
domain of H(0).

Furthermore (H(0) + 7)¥o = ¥¥ o, 50 H (0} ¥ = 0.
D(H(p)) = range ([Ho(p) + 7]'1)
= {}3& H(p) +7)ih: h c 5}
= {lim (#,(9) + 7y Yh + R (¢, 7)H,(p)
— H, (@R (p,7)h: h € §}

< Range (H(q) + 7)1 = D(H .(2)).

By symmetry, therefore, D{H( p)) = D(H{g)). We already
know that [[E(p — P) — E(g — P)]** |l = Ip — ¢l so all
that remains to be verified is that

[H ool p) — HodD)]** = [E(p — P) — E(q — P)]**. (3.27)

To verify this we again use the resolvent equation
R(p,7)—R,(q,7) =R, (£,")E(@ — P) — E(p — P))R(q,7).

Since E(g — P) — E(p — P) is defined and bounded on the
range of R (¢, 7) for all » and since the {R ,(p,7)} are
uniformly bounded we may take limits as # = < in A
and write

Rm(p,T) ’“Rco(Qa'y)

:Rw(p,r)[E(q—-P)-»E(p—-P)]**Roo(q,r). (3-28)
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Apply H(p) + 7 to the left and H(g) + 7 to the right

giving

H(p) — Holq) = [E(@ — P) — E(p — P)]** on D(Hu(q)).
Corollary 3.12:

(i) gg;gng limit (H,(p) + 7)1 = (Heo( p) + 7)1 for all

neEA

complex 7 not in (— «, 0];
(1) strong limit ¢ = &= P tor 211 1 = o
nea
l, (p) _ em{”(p) for all real ¢

(iii) strong limit ¢
n—»
€A

Proof: (i) restates the previous theorem. (ii) and
(iii) follow from (i) and operator theory, (Ref. 14, p. 502).

Definition: H(p) is the polaron Hamiltonian without
cutoffs and total momentum p.

B. The polaron with cutoffs

We have already defined the Hamiltonian for the polar-
on of total momentum p, Hf( p). In this section we first
define the Hamiltonian for the polaron with cutoffs as a
direct integral of the H/(p) over p in R2? and then state
the connection of this description with the more famil-
iar (1.6).

Lemma 3.12: Let f either be a cutoff function or
and put R(p,7) = (H{p) + 7)1, where r is any complex
number not in (— «, 0] and p is in R2. If  is in L2(R2, F),
then the F-valued function on R2, R (), defined by

(R7)n)(p) = R(b,7)h(P)

is also in L2(RZ2, §). The operator R (r) which takes &
into R ()~ is bounded with norm < «(»), where a(r) = 1/r
if » > 0and a(r) = |Imr| if » is not real. If » > 0,
then R (r) is self-adjoint.

(3.29)

Proof: The lemma follows from the fact that the
function R(r)2 is measurable, the self-adjointness of the
R(p,7)'s for r > 0 and the norm estimate

IR(£, M = a(r).

To prove that R(r)k is measurable it suffices to prove
that p = R(p,7) is continuous from R2 into the bounded
linear operators on ¥, with the norm topology.

This follows from:
| R(p,7) — R(a,s)|l = |p—ql-ar)als).

Lemma 3.13: Let f be a cutoff function. Let
R(p,7r) = (H;(p) + 7)1 and define R/(r) as in the pre-
vious lemma. ThenR f(r) is the resolvent of a non-
negative, self-adjoint operator on L2(R2, ¥). We denote
this operator by H..

Proof: Since R(p,r) satisfies a resolvent equation
for each p, so does R f(7):

R;(r) —R(s) = (r — S)RA7)R((s). (3.30)
Consequently, in order to prove that R f(r) is the re-
solvent it will be enough to prove that the null space of
ARf(r) is zero for some 7, (Ref. 14, p. 428). But R/(r)z = 0
in L2(R2, §) iff (Rr)h)(p) = RA p,7)h(p) = 0 for a.e.p
iff #(p) = O for a.e.p in R2 since we know that the null
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space of each R f( p,7) is zero. Thus,R (7) is the resolv-
ent of a closed operator for which we write H.:
(H;+ 7)1 =Ry(r) for all complex 7 not in (— <, 0].
(3.31)
By definition, spectrum (H,) < [0, ), and so H, is non-
negative. R,(s) is self-adjoint for » > 0 so H, is sym-
metric. Since spectrum (H;) C [0, <), H, is self-adjoint,
(Ref. 14, p. 271).

Definition: H, is the Hamiltonian for the polaron
with cutoff f in the total momentum description.

Lemma 3.14: Let h € D(H;). Then for almost
every p in R2, h(p) is in D(Hf(p{) and

(Hh)(p) = H p)( D).

Proof: h is in the range of Rf(r) so that 2(p) =
(R/(r)8)(p) = R p,7)g(p) for some g in L2(R2, §). Thus
h(b) € DH,(p)).

Furthermore g(p) = (Hf( bp) + r)r(p) for almost every
pand g = (H; + 7)h.

Remarks: There is another description of the cut-
off polaron which we give here. For details see Refs.
4,12, 0or 15. Let H, denote multiplication on L2(R2) by

mo'
Let S, denote translation on L2(R2) by k < R2;i.e.,
(S #)(x) = h(x-— k). Let V be the closed linear ex-
tension of the operator defined on the subset of L2(R2) ®
F consisting of finite linear combinations of elements of
the form g ® k where g is in L2(R2) and # is in § by

V(ig® h) = fﬂ, ((S,8) ® alk))f(k)dE.
Let
T=H,®@I+I®K+ (V+ V**—x(f, mgy,0).

Then T is self-adjoint on L2(R2) ® F and there is a
unitary operator W: L2(R2) ® § —» L2(R2, §) such that
D(T) = W‘1D(Hf) and (WTW-1n) (p) = Hf(p)h(p) for almost
every p in R2 and k in W-1D(H,). Thus WTW-1 = H_.

C. The physical polaron

The Hamiltonian for the physical polaron in two space
dimensions can be defined in two ways: either as the
direct integral of the H(p) over p in R2 or as the
generalized strong limit of the H 1 for n € A, It will be
shown that both definitions agree.

Theorem 3.15: There is a self-adjoint operator
H on L2(R2, §) such that for almost every p in R2 and
h in D(H ), h(p) € D(H (p)) and

(Haht)(P) = Ho PIN( D).

Proof: LetR (v) be as in Lemma 3. 12. The proof
of Lemma 3. 13, modified by replacing “f” with “«”
wherever the former occurs, demonstrates the existence
of a nonnegative, self-adjoint operator, H,, such that
(Ho + 7)1 = R (7). If we modify the proof of Lemma
3. 14 similarly then it is the conclusion of this proof.

(3. 32)

Corollary 3.16: Spectrum (Hy) C [0, ).
Proof: Given above.

Let { f,,} be the realistic cutoff functions with coupling
constant A. Put H, = H .



201 Alan D. Sioan: The polaron without cutoffs

Corollary 3.17:

(i) strong limit (H, + 7)1 = (H, + 7)1 for all complex
nen
7 not in (— «, 0};
(ii) strong limit e M _ g e tor t> 0;
nEA
itH

(iii) strong limit e''?» = ¢**“= for all real t.

Proof: (ii) and (iii) will follow, once we establish
i) (Ref. 14, p. 502). We now prove (1) Since the
i(H + r)'l} have uniformly bounded norms, in order to
verlfy (i) it will suffice to verify convergence on a sub-
set Z dense in L2(R2, F).

Let x,n = 1,2,...,s be characteristic functions of
bounded measurable subsets E, with finite measure and
let 2, € F. Define g € L2(R2, F) by

§
g(p) = El X, (DR,
n=

Let Z be the set of all such g's as the E's, h,'s, and
s's vary. Then Z is dense and we will verify conver-
gence on Z. For g as in (3. 33) we may estimate

”(Rn(r) —Rw(T))g‘Hz
= 28, fE,- (R (£,7) — R, (D, 7)), 2-dp.

(3.33)

(3.34)

By Theorem 3.8, R, (p,7)1; — Ruo( D, 7); I2—>0as

n — « for each flxed p. But 1f a(r) is as in Lemma 3.12
then IR (P,T)h —R(p,7)h; 2 < 4a(r)lk;ll2. Since the
measure of E; 1s finite, we may conclude by dominated
convergence that R (v)g =R (r)gasn — «in A,

Corollary 3.18:
D(H) = {h € L2R2, F): p - Ho(pI(p) € LE(RZ, F)}.

Proof: By Theorem 3. 15 we need only show {} C
D(d ;). Choose & such that i(p) € D(H (p) for a.e.p
and such that the function p = H(p)k(p) is in L2(R2, F).
Then, for a.e.p in R2, h(p) = R (P, 7)g(p) for some
g(p) € F. Since H,()h(-) is in L2(R2, &) so is the func-
tion g(-) and in fact & = (H, + v)"1g so that k € D(H ).

Corollary 3.19: Zero is in the approximate point
spectrum of H.

Pyoof: Let g € CEZ(R2) have support of diameter
less than € and have L2 norm one. Define a function
h in L2(R2, ¥) by

(p) = g(P)¥ .
Clearly, h(p) € D(H,). Furthermore, by Theorem 3. 15,
5 oo LYR( p) — H ol @)(q)]
= | Hool £)(2)Y o — H oo £)2(2)¥ o
+ 1H oo £)2(9)¥ o — H(9)2(q)¥ ool

= |g(0) — &) |H o P)¥ ol
+ lgllcoll H ao £)¥ o0 — Hoolg) Lol

= 1g(p) — 2@) | 1Ho( )Pl + gl 1o —ql.

= 1g(p) — &) 1Ho(0)¥ ol + |g(p) — g(g)]
I(H ool £) — Hoo(0)¥ ol + llgall 1p — g

= lg(p) —g(p)| 1pl + lgllwlp —ql.
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Thus p = H(p)a(p) is in C(R2, ) and so p = H( p)r(p)
is in L2(R2, ¥). Thus, by the previous corollary,
h € D(Hy).

Furthermore, since gl = 1 we have
IH 2 = [ 1H o p2( p)l|2dp
= [ H o £) — Ho(O)¥ ]I | ( p) [ 2dp

= Ip12lg(p)l 2dp = e2ligl2 = e2,

Since € is arbitrary we have shown that 0 is in the
approximate point spectrum of H .

upp (£)

Corollary 3.20: For every h in D(H,,) there is
sequence {#,} with 2, ¢ D(H,) and k, — h while
H,h, > Hoh asn — < in A,

Proof: Generalized strong convergence of the
self-adjoint operators H, (i.e., strong convergence of
their resolvents) implies graph convergence of the H,
(Ref. 17, p. 404).
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Depolarization in nonuniform multilayered structures—
full wave solutions*

E. Bahar
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In view of the recent impetus to produce rigorous solutions to more realistic models of pertinent
propagation problems over a wide range of frequencies, we present in this paper full wave solutions
to the problem of radio wave propagation in nonuniform multilayered structures. The
electromagnetic properties of the media, the geometry of the irregular structure, and the
electromagnetic source distributions are assumed to be arbitrary three-dime nsional functions of
position. Generalized field transforms are employed to provide a basis for the expansion of the
transverse electromagnetic fields and Maxwell’s equations are reduced to a set of first-order coupled
differential equations for the forward and backward, vertically and horizontally polarized wave
amplitudes. For open structures the complete wave spectrum includes the radiation term, the lateral
waves, and the surface waves or trapped waveguide modes. For structures bounded by impedance
walls (or perfect electric or magnetic walls p/€ — 0 and €/p — 0, respectively) the fields are
expressed exclusively in terms of waveguide modes. Exact boundary conditions are imposed at all the
interfaces of the structure and the general solutions are not limited by the (approximate) surface
impedance concept. The full wave approach employed is not restricted by frequency considerations.
It is applicable to very broad classes of problems in which no single constituent of the total formal
solution dominates. The full wave solutions may be applied to problems such as (i) propagation of
ground waves over irregular and inhomogeneous terrain, (ii) scattering by rough surfaces and objects
of finite dimensions, and (iii) propagation of guided waves in nonuniform artificial waveguides as
well as in irregular ducts in the earth’s crust or in the ionosphere.

1. INTRODUCTION

In recent years there has been a considerable growth
of civil and military interest in the development of more
reliable communication and detection systems, The
potential for developing radio wave methods for remote
sensing (above and below the earth's crust) and the need
to develop hardened communication systems have con-
tributed much to this renewed interest. This has been
paralleled by the remarkable advances that have been
made in the availability of high powered, very low fre-
quency electromagnetic sources that are capable of
radiating deeper into the earth's crust as well as com-
mercially available transmitters operating at optical
frequencies, These developments along with the ready
access to large, versatile, digital computers have pro-
vided considerable impetus to produce rigorous solutions
to more realistic models of pertinent propagation prob-
lems over a wide range of frequencies.

To this end full wave solutions to the problem of radio
wave propagation in nonuniform multilayered structures
have been derived recently,! However in this recent
work it has been assumed at the outset that the electro-
magnetic and geometric parameters of the layered
structure are independent of one Cartesian coordinate
variable (see Fig.1). In order to apply our present
analysis to a wider class of more realistic problems
this restrictive assumption is not made here. Thus, in
this work, the medium of the Zth layer of the structure
is characterized by the electromagnetic parameters
€,(x,z) and p (x, z) which may in general be complex to
account for medium losses. For instance, if ¢, and ¢
are the dielectric coefficient and the conductivity of the
ith medium,

€ (x,2) = €, (x,2) — i0;(x,2)/w. (1.1)

The interface between medium ¢ and ¢ + 1 is described
by the surface ¥ =k, ,,,(x, 2) and the thickness of the ith
layer is ’

Hy(x)=h_y (%,2) —k; ;,,(x,2), i=1,2,...,m+ 1.

(1.2)
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For convenience we shall assume that the nonuniform
structure is excited by arbitrary three-dimensional
distributions of both electric and magnetic sources J
and M, respectively.

For the purposes of the analysis, generalized field
transforms similar to those derived earlier? are
employed. The generalized field transforms are used to
reduce Maxwell's equations into a set of first-order
coupled differential equations for the vertically and
horizontally polarized, forward and backward wave
amplitudes.

4

hoy |

v,
2

€2(X,2)
hp 5 —t]

h3 4:04,5~———

! &% prr-i XiZhonpey
] X2 g 20

Prctyr
' T+l he,r+1

I B
ez et | ol e -2, m-1
. €m_i %2} pmfXZ Het
o, m m o emiX2) pgdx2) Pm-1,m
FIG.1. Electromagnetic radiation in nonuniform layered structures.
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Since no exact analytical expressions for the character-
istic functions are known when €, p,and ,,, ; are arbi-
trary functions of both x and z, the basis functions used
in this work, in general, do not have the desired property
of being orthogonal. Nevertheless, they exhibit quasi-
orthogonal properties that yield tractable solutions to
the general problem,

Since exact boundary conditions are imposed at all the
interfaces of the structure, the solutions are not limited
by the applicability of the surface impedance concept.

2. FORMULATION OF THE PROBLEM

For the general class of problems considered in this
paper there are no axes of symmetry. A right-hand
Cartesian coordinate system is used, with the y axis
normal to the reference plane from which the heights of
the layers' interfaces are measured (see Fig. 1). For
special cases in which the variations in the electro-
magnetic and geometrical parameters of the structure
depend strongly upon direction, it is judicious to orient
the one axis (for instance the z axis) in the direction of
least change in these parameters. Thus when consider-
ing the problem of propagation across a coast line we
orient the z axis parallel to the coast line.

Maxwell's equations for the transverse components of
the electric and magnetic fields E; and H,, respectively,
are

E, . _ 1 1 —

—— =iwuH, X a,) — .—VT<—-VT « (Hp X ax)>
0x iw €

_ _ 1 dJd,
+ My X a, +t—V;—

- (2.1a)
iw €
and
aﬁT L — 1 1 I
— —= = iwe(@, X E;) ——V; | =V, «(a, X ET)>
ox tw i
- 1 M
+a, XJp +—V, * (2.1b)
iw
in which the operatorV; is
_ _ 2
Vr = ay—y + az—z (2.1c)
and the transverse vectors are
A, = ZiyAy +a,A,. (2.14d)

At all the m interfaces of the nonuniform layered

FIG.2. Direction of the unit vectors [, .., %; 1, %; ;.1

and %, , with respect to the local tangent plane.
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structure (Fig. 1) the tangential components of the
electric and magnetic fields are continuous. The corres-
ponding boundary conditions for the electric and
magnetic fields are expressed in terms of the unit
vectors 7%, ;,1,m; ,.1,and [, ., at the interface between
medium 7 and medium ¢ + 1 (see Fig, 2). The normal to
the surface k; ;. is

T = _ahi.i+1 1. ah'i,i+1 .
i,i+1 ax » 2z
——-ahi'“) e (P *) (2.2a)
ox oz :

The vector m; ;,, is in the direction of the projection of
n; ;. in the transverse y, z plane, thus

_ R 11 oh; 1.1\ 27 1/2
My 1 = <0, 1,———8’2' )/[H (———a‘z’ ) ] . (2.2p)

The unit vector  ,,, is given by

(2.2c¢)

Thus, the tangential electric fields at the interfaces of
the structure are continuous provided that

[ﬁ x E]hi—tl'i = 09
i-1,1

i=1,...m. (2.3a)

From (2. 3a) we obtain the following boundary conditions
for the transverse electromagnetic fields:

ot oH. , . h i
(T-E)s =0, thus |E,—24g | =0
By i 0z iy
and (2.3Db)
[([- @mx E)]".i =0, thus
1,1
_ = ohy, Ry
E, + m By —=i =0, (2.3¢)
ox Biyg

in which
E, = (1/iwe)Vy, « (Hy X @,) — J,].

Similarly, since the tangential magnetic fields are con-
tinuous, we obtain the following houndary conditions:

ot oh, o . Rl
[[-H%1vi=0, thus |H, % g7 _p
hisyi SO 1y, (2. 42)
and ' ’
[[-(7 x H)]"1.i =0, thus
Biev,i
R ahi-li h’:—l,i
H, +m Hy bt —0 (2.4b)
ox hisyi
in which
H, = (1/iwp)[Vy * (G, X E;) — M, ]. (2. 4c)

Arbitrary three dimensional source distributions may
be regarded as superpositions of electric and magnetic
point sources

J=I8(r — 7) (2. 52)
and

M = K67 — 7,), (2. 5b)
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in which 7 and K are measured in amperes and volts,
respectively, and 8(¥ — #) is the three-dimensional
Dirac delta function

8(r —7) = 6(x — x5)8(y — ¥4)8(z — 2). (2.5¢)
For the purpose of our analysis we employ the following
completeness and orthogonal relationships derived from
the familiar Fourier transform:
1 f°° e-w(rzo) dw
27 TTeo

(e —2g) = (2. 6a)

and

B —w’) = L [P erat-w) g (2.6D)
27 “reo

in which 8(a — 8) is the one-dimensional Dirac delta
function. Using generalized Fourier transforms derived
for anm + 1 layered structure wé obtain the following
completeness and orthogonal relationships3:

exp(ivgy) + Rgg exp(— ivyy),

204

6(y — ¥o) = 22 ZENPYF (v, y ¥ (v,4)
= [2ZENBYE (0,9 (v, yo)dv,

L]
+ [ ZENEGE(v,yWE (v, 3)dn,,

N
+ 2 2P 0,3 (0,90) (2.7a)

and
[ ZENEYE (0,907 (0", 9)dy = A(v, v)
oy, v, v
= § {
)

=y,
(2.70)

L.
v,vg? U= Uss

where the superscript P equals V or H and the subscripts
¢ and 7 are equal to o,m, or s and §_ , is the Kronecker
delta. The basis functlons are

for medium 0

> r
RBAS (v, 3) = ﬂl(T"q/?E»’é) exp <z Zavq-l.th;»l,q) (2. 8a)
g = g=
X [exp{iv,y) + RZ* exp(— iv,y)], for medium~r =1,2,3,...,m,
Hoow 4
El(TPvm+1—q/Tlgg-q) exp( E -¢,m+1- qhm -g,m+l- q)
RYE YP(v,y) =1 X [exp(— #v,y) + RE! exp(zv,,y)], for mediumv =0,1,2,...,m — 1, (2. 8b)
exp(— iv,y) + Rg: exp(iv,y), for mediumm,
and
exp[— iy — hy )], for medium 0,
}%E exp(— ivth, )| exp(iviy) + RPF exp(— iviy)], for medium 1,
P
YP(0,9) = ¥ (v,h ) < 1 . r o rom (2.80)
}‘tg)—g— exp(w- w’iho'l) qr:lg(TPq_l/TPq )
r
3 qE=2 1o~ 1‘32 [exp(ivny) + B2* exp(— iwwry)], for mediumr» =2,3,...,m,
where B
u d 1 and
Wi o) = [ & o (2.84) ,
T Zivy du Rl RP = RB, exp(~ i20,H;), RP! =RP; exp(i2v;h; 11),
R2, is the reflection coefficient at the i,/ + 1 interface R =RY, exp(—i2vH), RI}=RE, exp(— i2vh_, ).
for waves incident from above, and R§] is the reflection (2. 9¢)
coefficient at the i — 1, ¢ mterface for waves incident The transmission coefficients are
from below (see Fig. 1). Thus for P= Vor H
T2=1+RB, ZTY=1+RY, TPE =1+RY,
RD =0 RP. .+ RPE /(1 + RP, .RDE
Fm b4 ( i+l,d Pi 1)/( i+1,i * Py 1)’ T,%’{I =1 +Rg? (2. Qd)
i=0,1,...,m—1
and {2.9a) and the normalization coefficients are
Rf, =0, RE =(REL,; +REL)/(1+RE, REL), RDA /228, q=0,
Z—-l,zy-.-;mr Nf= Rg%/zz;s, q =m, (2_93)
in whichRY ;, and Rf, ; are the two media Fresnel 1 , 4=S§8.
reflection coefﬁcwnts ior vertically and horizontally
polarized waves, respectively. The two infinite integrals in the completeness relation-
ships (2.7a) are associated with the radiation and the
RY, . =—RY . = (v€, — 1,16/ (1€, + 1,,€), lateral wave terms (the continuous parts of the wave-
’ ) number spectrum), while the finite sum in (2. 7a) is
RA, . =—Rf,. =g — Uit )/ (Vi1 + 0iqis) associated with the surface waves or trapped waveguide
' ’ (2.9b) modes {discrete part of the wavenumber spectrum). The

4. Math. Phvs.. Vol. 156, No. 2. Februarv 1974
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relationship between the generalized transforms and the
familiar Fourier transforms has already been estab-
lished.3 The infinite integrals are associated with branch
cuts at Im(v,) = 0 and Im(y,,) = 0 and the surface wave
terms are associated with the residues of the poles at
1/R3, = 0 (or 1/R¥, = 0). The modal equation that
determines the surface wave parameters v for verti-
cally and horizontally polarized waves is given by

1 —RY, R, exp(— iy;H)=0, Im(x)=<0 (2.10a)
fori=1,2,3,++ or m — 1and P = V and H for the
vertically and horizontally polarized waves, respectively.
The parameter vu;_, , is defined as

Vpeqi = Vi1 — Yo (2.10b)

From (2.1) it follows that for this problem the basis

(characteristic) functions €, and iiT satisfy the differ-
ential equations

(1 + <9, i_VT > (ip % a) = _::7 z (2.11a)
and
<1 fhg Ly ) @, x &) =% hy, (2. 11b)
k2 " p we

in which the characteristic value ¥ and the wavenumber
k; for medium 7 are

u= (k2 —v2 ~w?)2  Imu)=<0 (2.11¢c)
and
k= w(pe)2,  Im(k) =<0, (2.11d)
The boundary conditions for &, and &, are
dh,y, - _] M
By, |l g .G ", (2.11¢)
¥ 0z R
i-1,1
1 - - _ _ k. | By
[.—vt- (hy X @) +7-2; ——’—1—] oo, (2.118)
iwe ox AT
~1,1
oh,_ . iy
hpea, —2L R -a] T =0 (2.11
T - y . g)
[ 7 oz ‘ hiiy,i
and
1 ' NP (S
—V,r(a, Xep)+n- hy : = 0, (2.11h)
iwp ox Ky i

For the special case in which the electromagnetic and
geometric parameters of the structure are independent
of x and z, expressions for ¢, and # ; satisfying (2. 11)
have been derived and biorthogonal relationships satis-
fied by these functions have been established.! There
are two sets of solutions to (2.11), one corresponding

to vertically polarized waves (8} and }7}’ ), and the second
ggl;resp_onding to horizontally polarized waves (2# and
hE).

_ - a,iw v,y
TV=ZV<awa(v,y)—u2+w2 - tp(w,z)),
(2.12a)
Y = @,V (v, )ow,z), (2.12b)
ef =a Y (v,y)ow,z2), (2. 12¢)
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and

a,iw
ﬁ{f = Y# (— 'dyw-”(v,y) + 2

W H(v,y)
u? +w2 9y

>¢(w,z),

(2.124d)
in which ¢(w, 2) = exp(— iwz), and for medium { the
transverse wave impedance for vertically polarized
waves is

ZV(v,y) = ZV = (u? + w?)/uwe; (2.13a)

and the transverse wave admittance for horizontally
polarized waves is

YHE = (u2 + w2)/uwp. (2.13v)
These characteristic functions (2, 12) provide a basis

for the full wave expansion of the transverse components
of the electromagnetic field. Thus we have

-— o0 - P
Ep(x,y,2) =2 f_eo[EV(x, v, w)ef + EH(x, v,w)ef |dw
v

2.14
and ( 2
HT(x’y,z) = Z f—°° [HV(x, v7w)ﬁTv + EH(x’ U’w)ﬁg]dw'

v T® (2. 14b)

For the general problem in which the electromagnetic
and geometric parameters of the structure are arbitrary
functions of ¥ and z, closed form analytic expressions
for &, and h, satisfying (2.11) are not known. Hence in
this paper we employ basis functions that “locally”
satisfy the differential equations (2. 11a) and (2.11b)
together with the boundary conditions (2. 11e) to (2, 11h).
By this it is meant that while ,,€;,and k., ; are
assumed to be functions of x and z, expressions involving
their derivatives are ignored in order to determine the
“local” basis functions, Thus in the expressions for the
basis functions &, and 4, (2.12), the scalar functions
Y¥(v,y)(P = V or H) are not only explicitly functions of
¥ but also implicitly functions of x and z through the
electromagnetic and geometric parameters of the struc-
ture p;, €; and h,_; ;. When the structure's parameters
are functions of x but not of z, the basis functions main-
tain their biorthogonal relationships, Thus in this case
it can be shown that for P = Vor H!

EP(x,v,w) = f_:ET(u,y,z)-(hg X a,)dydz  (2.15a)

and
0 -— —
HP(x,0,w0) = [ Hp(x,9,2) (@, X &F)dydz, (2.15b)

where the complementary (reciprocal) basis functions
are

el = zvNv (ﬁyw"(v,y) + ujziwwz awa:fv,y)> bew,2)
=2,¢° (2. 16a)
hf = a,NVy¥(v,9)$°w,z2) =k, ¢° (2.16b)
ef = @, N#YH(v,y)¢c(w,2) = &, ¢°, (2. 16¢)

and

i = v (~ 2,0, - 2 a‘”;(”’y ) oo,
= i, 00, (2.16d)

in which ¢<w, z) = (1/27) exp(iwz) and use has been
made of the biorthogonal relationships
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) P -\,
f_mer (h x &,)dy dz

o =08p gAlv — v)0(w —w?),
L 18- (@, x &Fydy dz

2.1

for P and @ equal to V or H. The primes associated with
with some of the terms in (2. 17) indicate that for these
terms the variables are «’, v’,w’. The expression
A{w, v') is defined in (2,'7Tb). For the general case con-
sidered in this paper the biorthogonal relationships
(2.17) are not satisfied, Consequently, appropriate
expressions for the field transforms EP and HP (P =V
or H), that replace (2. 15), need to be found.

3. THE FIELD TRANSFORMS

In order to obtain the appropriate expression for the
electric and magnetic transverse field transforms E ¥ and
HP? (P = V or H), respectively, it is necessary first to
determine the values of the surface integrals (2.17) for
the general three-dimensional case considered in this
paper. Using the orthogonal properties of the scalar
functions ¢# (2, Tb) and the completeness relationship
(2. 6Db) it can be readily shown that for P =@ (2.17) is
still satisfied, thus for P = Vor H

(-]
f_w ef ~(hf X a,)dy dz
= Alv — v")0w —w’). (3.1a)

[ g @, x egyay dz

Furthermore, since ef and (@, X &) are orthogonal to
(hT X a,) and E respectwely, we also have
X @,)dy dz = f kY. (a, x &F)dy dz = 0,

©ZH « (BT
f_m‘?z‘? 3
(3. 1b)
On integrating with respect to y it can be shown that
f ey
_ Hw —w) f°°<

27 o0

AL (v w'yv,w) = hF X @) dydz

(22 + w2)(u? + w2)' NE’
[@? + w2 — (w2 + w2) '

X i‘; YV(v, k., DVE By Y2 — kt”l)

X exp[— iz(w —w’)]dy. (3.1c)
Similarly it can be shown that
o
[ nE - (@, x efydydz = AR (v',w';v,w),  (3.14)
o0

where A# can be obtained from A} by employing the
duality relationships in electromagnetic theory. Thus,
to get Af from (3.1c), we set

YW (v, ) = — Y, y),
and
NY <> NH,

Vi, y) = ¢V (v,y)
(3.1e)
ZV «> 1/YH,

In the integrand of (3. 1c¢) the term in the square bracket
is implicitly a function of z through the parameters u,,
€;,and #;_, ,. For the special case when the parameters
of the layered structure are independent of z it can
readily be shown on employing (2, 6a) that A7 and A#
vanish by virtue of the coefficient (w — w’) that multi-—
plies the integral. On the basis of the relationship (3.1)
it can be shown that the field transforms EF and HF (P =
V or H) in (2. 14) are
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0 - -
EV(x,v',w') = [[Ep(x,y,2) (hf % a,)'dy dz, (3.2a)
- o0
w_
Hix,v'sw') = [[ Hylx,y,2) (&, x eL)dy dz, (3.2b)
-0
Efx, v ,w') + 2, f_: AY (v, w'; v,w)EWx, v, w)dw
Y o0
= ﬂir(x,y,z)-(hg X a,)dy dz, (3.2¢)
and
H (0", w) + 5 [ AR, w'; 0,0 HE(x, v, w)dw
v 0
= [[H(x,9,2) (@, X éZydydz. (3.2d)

On substituting (3. 2a) and (3, 2b) into (3. 2¢) and (3. 2d)
we can also express the transforms E¥ and HY exclu-
sively in terms of the transverse electromagnetic fields
E, and H,. Thus even though the basis functions £ and
k% are not orthogonal to the complementary basis func-
tions f and 27, nevertheless due to the quasi-orthogonal
properties exhibited by these functions, (3. 1), it is
possible to invert the full wave expansions for the trans-
verse electromagnetic fields E; and H; (2.14) and obtain
explicit formulas for the field transforms E# and H¥ in
terms of E; and H.

In our work it is convenient to express the field trans-
forms EP and H? in terms of forward and backward
wave amplitudes ¢ and b7, respectively, as follows:

H? = gP + p® andEP =af —bP for P= VorH. (3.3)
4. VERTICALLY AND HORIZONTALLY POLARIZED

WAVE AMPLITUDES

In this section we convert Maxwell's equations for the
transverse electromagnetic fields B, and H; (2.1) into
a coupled set of equations for the vertically and horizon-
tally polarized, forward and backward wave amplitudes
a® and &€ (3.3). To this end we substitute the complete
full wave expansions for E, and H, (2.14) into Eq, (2. 1a)
and scalar multiply the equation by (rf % @,)" and inte-
grate with respect to y and z over the entire y,Z plane,
The expressions for the scalar functions Y # are in
general piecewise continuous functions, thus the inte~
grations with respect to y must be performed separately
in each layer of the structure. Furthermore the trans-
verse field expansions (2. 14) do not converge uniformlly
at all points of the y, 2 plane when the parameters of the
layered structure are functions of x and 2. Hence in
general it is not permissible to interchange orders of
integration (summation) and differentiation. Thus, we
have

oo aET -

- - (hE

v d oo nT =y
o 5o " BF X @ydyda =— — [ EBpe (i x @dyde

w. 0 -
+ f_mET-g-;(h;; X a,) dydz

2. roo - -1kt
— 2 J T [Epr (hF X a )] i tand, jdl
=1 ® i-1,1

(4. 13}
in which dl,_, ; is the line element along the intersection
of the y, z plane and the surface y = =h,_;, and

My My =COSO, 4 ;. (4.1b)
Thus
Oy,
tang, , ,dl,,, = ~——a——— dz. {4.1¢)
5
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Furthermore, using Green's theorem in two dimensions,
we get

f_”VTiIi - (kE % @) dydz
oy
— [0 2% - (F x 3, dyde
e . - " Be o _
2 f [—é‘ (hf % ax)'} I T, dz:‘—l.iy

Z"l.t 4.2
and (4.2a)

L | o - - -
.[wVT eVt HE X @) (k] X a,)dydz

0 o - - -
= [, H xa2,)v% ‘}:“VT (h§ X a,)dydz

m
1 — T _
-Z [EV sy % a)hE % @)
— 10 G x ayEpx )|
T ' i-1,1 i-1,%

i-1,4
(4. 2b)

Employing (3.1) and the exact boundary conditions for

the transverse electromagnetic fields (2, 3¢, d) and

(2. 4a) and noting that

- . I
E—v, (R x ax)] Tt =,

i~1,8

(4. 3a3)

1 N
<1 + S ) Ry % a,)

= ﬁ.gr + __¢c

wu

- [1 Vo(RVX @ )] (4. 3b)

and at any interfacey =4, ;
ET * (Eg X a,)

= Ep-m)RE X 3, m) — (7 X Ep) [(if X @) x ),

= (Ep m)RE + T) — (Ep - DGE -m), (4.3c)
and
Hy X a,~m =Hp-1, (4.34)
we can show that (2, 1a) reduces to
—_ iEV(x, v, w') — wHYx, v’ ') — Z; f°° iu’A#H”dw
dx oo

+?f_: (CYEY + CHE®)dw + ?L:(FVVHV + F¥HY) dw

= f¥x), (4.43)
in which Af is given by (3. 1d),
CE(v',w' v,w) = f a}.’- — (ﬁT X @ )dydz
id oh, .,
+ E f_ (eT lz-l z)(k z—1 i ] 1—1 : 'Llidzy
i=l Bl dx
(4. 4b)
FFRv',w’ zr,w)
—~f ¢—a—;lVT (hy x @,)'dydz, (4.4c)
and
Vi — o0 ET' e 7 1 LT 5 V7
fAx) = f-oo [‘Mzhl’ ra, — M“;JxVT : (hv X @) ]dydz'

(4. 4d)

Scalar multiply (2. 1b) by (@, X e})’ and integrate with
respect to v and z over the entire y,z plane. Following
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the same procedure used to derive (4. 4a) and noting
that

- - 1 o - . kly i
~Vp+(a, xel)=—¢c— -a] ' 4. 5a)
(1 + &g lvr-) (@, x &%)
k2 °
.
T we k2 9z

and at any interfacey =h,_, ,,

(7, xE‘T)-mz—«EfZ', (4. 5¢)
and

(Hpea, x f) = (Hp+m)a, X ef -m)
— @@ % Hy)+[(@, x &F) x i)
=— (Hp - m)(El- )+ (Hy- (&l -m), (4.54d)
it can be shown that (2. 1b) reduces to
d ¥ ? y 2 7 d s
- &;HV(x,zz LW — iwEVx, v, w’) ma%‘, f_oo ABH Hdy
+ 2 [“(DYHY + DEHH)dw
» o0

+ 3 [T(GLEY + GEERdw = g7, (4.62)
v —o0
in which
DEW ' v,w) = [ThE L (@, x #2)dydz
v ’ 2 Uy o T ax % v
N (CrEE.T . \(BT . s Oy,
= 2 [T Y@F -y )]t —FRaz,  (4.6D)
i=1 1. 0X

GE(W,w'v w)

= [2 ot xapoc[a (Lo @ x 7))

<L A P P A
-7 f_ [”.“-(ezf‘li—l,i)‘bc—(ev'ay)ﬂ i1, dl, .,
i st i 2 1 i
(4. 6c)
——MVT (@, X el)dydz
wp (4. 6d)
On scalar multiplying (2, 1a) and (2. 1b) by (hT X a,)" and
(a, x ef)’, respectively, and integrating with respect to
¥y and z over the y, z plane, we obtain in a similar manner

gVx) = [ Jp ey dydz — f«,

d ' 1 » r d o
— aE”(x,v y') — W HA(x, v w’) ~ o ? LGOAEEde
o0
+ 2 [_[CEEY + CEE#)dw
v

+ 5 [TV + B = fi(), (4.7a)

- ﬁHH(x, v, w') ~ iwE#Hx, v, w) — 2 [ °° iwAYEVdw
dx )
+ 2 [Y[DYHY + Dff)dw
F o0
+ 3 [[GEEY + GEEdw = gH(x), (4.7b)
v “o0

in which Af is defined in (3. 1lc) and
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le(v”w’; v,w) = fwér * a (;l-g X ?zx)'dydz
; Oy
+ Z; f [eT z-l 1)(hT m; 1.3 ) ] t-l,z = dZ,
ki ox
(4. 8a)
D,f’(v’,w’; v:w) j_‘ _H ’dydz
B s
- 2 f ((RE Ty )@F Py )], i’ a;l" dz,
(4. 8b)
‘F}ip(v’,wl; v,w)
© 1 - - - 91 -\,
= J o7 BF ,>-¢0az;[ Y - iy % @,)
1/ 9o _ 9 -
- E“ a, —a; + dzl(.I)) —a‘-z'(hV ° dy):Idde
o0
- Z) ‘/; l:'_(hfl'p. -1, z)¢ (h'H ‘a )j] dlz—l i
i=l iwe By g
(4. 8¢)
GP’ ’ °°1 —)cal —x_’ddz
W, w',v,w) = f—mﬁ(éT . ay¢¥;VT- (a, X &,)'dydz,
(4. 8d)
fAx) = f My -hFdydz — f ——J Voo (RF X @,)dydz,
(4. 8e)

Vr (@, X ef)dydz.

(4. 8f)
Equations (4. 7) and (4. 8) can be shown to be related to
(4.4) and (4. 6) through the duality relationships in elec-
tromagnetic theory. [(a, X &F) <> (f X @,),J <> M,
p <> €]. When the structures parameters are indepen-
dent of z, Af, F#,and G§ vanish and the expressions for
C§ and DQP reduce to those derived earlier,! While C§
and DP aré E field to E field and H field to H field
couplmg coefficients respectively Ff and Gé" are mixed
type coupling coefficients., To derive the coupled equa-
tions for the forward and backward vertically and hori-
zontally polarized wave amplitudes we substitute (3. 3)
into (4. 4a), (4. 6a), (4. 7a), and (4. 7Tb). Thus it can be
shown that for P= Vor H,

gi(x) = f J(EF + @ )dydz —f_:—l——M

daP . 1 a ’
_Ef_m —1 xz;;;f [A8(a® = b9))aw
wgzz; f_ w’'[A8(a® + b9))dw

= Z)Ef Bha® + SEBbRlaw’ — AP, (4. 9a)
Q@ v
_ ab® p_14 Q4 pe
= + fua zdx§§[A3(a + 89)jdw
222 f iw'[A%(a® £ 69)]dw
—Ez‘j £4aQ + SAFOQ)aw’ + BP, (4. 9b)

in which the upper sign is used for P = V and the lower
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sign for P = H. The transmission scattering coefficients
are

Sy (v, w; v',w’) = — 3[CH(v,w/v',w’) + DR(v,w; v, w’)
+ FS(v,w; v',w') 2 GR(v,w; v',w’}] (4.10a)
and the reflection scattering coefficients are
SEH(v,w; v, w’) = 2 C8(v,w/v' ,w') — D&, w; v’ w")
F FR(v,w; v’ ,w') + GR(v,w; v',w’)], (4.10b)
where the upper sign is used for @ = A and 8 = B and the
lower sign for o = B and 8§ = A. The source terms are

—g%9)/2
(4.10c¢)
for P = Vor H and A} is defined by (3. 1) for P = @ and

AP =— (fP +gP)/2 and BP =-—(fF

Af(v,w;v',w’) =0, P=VorH. (4.104)

5. CONCLUDING REMARKS

Employing generalized field transforms, Maxwell's
equations for inhomogeneous media, with arbitrary dis-
tributions of electromagnetic sources, are converted into
coupled sets of first-order ordinary differential
equations for the vertically and horizontally polarized,
forward and backward wave amplitudes. The basis func-
tions used for the full wave expansions of the fields are
shown to exhibit a quasiorthogonal relationship with a
complementary set of basis functions when the propaga-
tion medium is an inhomogeneous layered structure of
nonuniform thickness, This quasiorthogonal property
renders a tractable solution to the general problem even
when the electromagnetic and geometric parameters of
the structure are arbitrary three~dimensional functions
of position.

The full wave solutions are not limited by the con-
venient surface impedance concept nor are they re-
stricted by frequency considerations. They are applicable
to a large class of propagation problems in nonuniform
structures for which no single constituent of the total
full wave solution dominates. These solutions permit the
use of more realistic models of pertinent propagation
problems, They include scattering by rough surfaces
and irregularly shaped objects and propagation over
irregular terrain and in nonuniform ducts. Since the full
wave expansions for the fields account for the radiation,
lateral wave, and trapped waveguide modes of the struc-
ture, the solutions developed in this paper may be
applied to open as well as closed structures,

* The research reported in this paper has been supported by the
National Science Foundation and the Engineering Research Center
of the University of Nebraska. The author wishes to thank
A. Edison for his comments. The manuscript was typed by Mrs. E.
Everett.

'E. Bahar, J. Math. Phys. 14, 1502 (1973).

2E. Bahar, J. Math. Phys. 14, 1510 (1973).

3E. Bahar, J. Math. Phys. 14, 1024 (1973).



On inverse scattering
V. H. Weston

Division of Mathematical Sciences, Purdue University, West Lafayette, Indiana 47907

(Received 22 August 1973)

In a previous paper the inverse problem associated with a hyperbolic dispersive partial differential
equation with smooth coefficients was considered. The inverse problem (the determination of the
coefficients) was formulated in terms of a dual set of integral equations involving measurable
quantities, the kernels of the transmission, and reflection operators. These equations contained an
unknown parameter which occurs in a linear manner. A better approach to determine this parameter
is presented here. It involves an auxiliary equation, which is used to eliminate the unknown
parameter from the integral equations. It is shown that the resulting system has a unique solution
for a certain class of scattering problems. These uniqueness results are then strengthened when an
additional equation is employed to reduce the dual set of integral equations to a single integral

equation.

1. INTRODUCTION

In a previous paper,! which we shall refer to as Paper
1, we considered the inverse problem associated with
the partial differential equation

Uy, — Uy + AX)u, + Blx)u; + C(x)u =0, (1)

with smooth coefficients that vanished outside the inter-
val 0 < x < I. Scattering operators involving the mea-
surable quantities, the reflection and transmission
kernel, R, , T, were introduced, where the signs corres-
pond to the direction of the incident wave with relation
to the positive x axis, The inverse problem (the deter-
mination of the coefficients A, B, and C) was formulated
in terms of a dual set of integral equations in the vari-
able ¢ with x fixed, These equations contained an unknown
parameter which occurs linearly, A technique for com-
puting the unknown parameter was developed involving
the solution of a second-order ordinary differential equa-
tion. The question of uniqueness was partially answered
in that it was pointed out that Neumann series would
converge for x sufficiently close to 0 or I. The question
of uniqueness was further pursued? where it was pointed
out that one needed additional equations or restraints,

Here we develop a better method of obtaining the
unknown parameter. An auxiliary equation is derived
which is used to eliminate the unknown parameter from
the system of integral equations. Once their solution is
found, the unknown parameter is found by integration,
from the auxiliary equation, From a stability standpoint,
this is a better approach than that given in Paper 1. In
addition, when this auxiliary equation is employed, the
treatment of uniqueness is better than that given in Ref.
2. Existence of a solution is shown, and sufficient con-
ditions on the coefficients, for uniqueness, are obtained,

It will also be shown that when an additional equation
is employed, uniqueness can be guaranteed under very
general conditions, although in this case the integral
equation to be solved may become unwieldy for com-
putational purposes.

2. FUNDAMENTAL INTEGRAL EQUATIONS AND
AUXILIARY CONDITION

To simplify notation we shall set
K (x,£0) =f(t),
K(x, ;1) = g()G(x).

The equations given by Eqgs. (24a) and (24b) of Paper 1
become
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G L = 1) + 8,05,0) = [ A8, (3,000 = 150 (28

holding in the respective ranges x = ¢ < 2/ — x and
21 — x < ¢, and where

Sy, ) =R(y + ) + f:R+(y + s)L.(s — f)ds.

The equations given by Eqgs. (25a) and (25b) of Paper 1
become

L — 1)+ OGRS (x,0) + GO [ g(9)S.(, dy

{— f® (3a)
0 (3b)

for the respective ranges —x = { < x and { < — x, and
where

S(3,0)=R.(y+ )+ [ R(s+yIL(s—ds

and the unknown parameter is given by G{x)"1.

In order to obtain the proper auxiliary equation, we
shall employ either Eq. (2b) for the range ¢ > 21 + x, or
Eq. (3b) for the range { < — 2] + x. As was pointed out in
Paper 1, these equations become independent of the
variable ¢ for the ranges quoted above. Their explicit
form will be required here, To achieve this first note
that the quantity S, can be written in the form

SmO=M +) — f_zRJy + s)L (s — t)ds
Since
—M,(y +¢ = L,(s—1t) =const = L (—2])

for the ranges —x <=y =sx,—y=s=x,{= 2] + x,it
follows that

Sy, 1) = — L(—2) <1 + [ waf(u)du)
and Eq. (2b) reduces to the following for { = 2] + x:
2
L(—21) [c(x>~1~ (1 L [ R+(u)du>

+ [ o + fo“ym(u)du]dy] —~0. (4a)

In a similar manner Eq. (3b) reduces to the following
for ¢ = — 21 + x,
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L.(21) [G(l)‘l —Gx)? <1 + [: lR_(u)du)
— fle”xg(y)[l + filyR_'(u)du]dy} =0. (4b)

For present purposes we shall assume that L (—21) =
0, in which case we will employ Eq. (4a) as the auxiliary
equation. If L (—21) = 0,but L_(21) # 0, then Eq. (4b)
may be used; but to employ it, a modification of the
unknown quantities must be made. One should solve for
the quantities K,(x, y; 1) and G(x})K_(x, y; 0) in this case,
The vanishing of both constants occurs only in extreme
pathological cases.

Thus with L, (—20) = 0, the auxiliary equation (4a) will
be given in the form

cli=1+ [ R du — [ TrG) <1 + [ x”Rf(u)du)dy.
(5)

We will require the following alternative form for
Egs. (2a) and (3a), which are obtained by employing the
relations Egs. (6) and (12) of Paper 1,

t
0] +fx T (s — tg(s)ds
x
=—GW)-1T(x — 8 +R,(x +1) — f_xR+(y + 8)f (y)dy,
(62)
x
O + [ TAs —Of(s)ds = T_(x — 1) — G(DG(x)R_(x + 1)
21-x
~GW [ Ry +)gly)dy. (6b)
The system of equations to be solved is (6a), (6b), and
(5). Equation (5) is used to eliminate G(x) from the
other two equations. Once these resulting equations are

solved, Eq. (5) is then used to obtain G{x). The coef-
ficient B(x) is determined from G(x) by the relation

G(x) = exp (— foxB(T)dT>

and the remaining coefficients are obtained from the
resulting expression for f(x) = K_(x, x; 0) given in paper
1.

3. EXISTENCE AND UNIQUENESS OF SYSTEM (5),
(6a), AND (6b)

If we use Eq. (5) to eliminate G(x)-1from Eqs. (6a) and
(6b), the resulting system of integral equations expres-
sed in general operator form, is given by

I+A)v = X» (7)

where ¥ and x are vector-valued functions, and in particu-
lar

= ()

The operator A is expressed in matrix form in terms of
the compact operators A,;, as follows

A A
1 1
A =< ” 2>.
Azy Az
Employing the real Hilbert space of square integrable
functions with inner-product given by

W, %) = [* g + [ 0F0at
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the homogeneous adjoint system corresponding to Eq. (7)
is given by
I +A"I*=0, (8)

where
*
A* = All Afz ‘I’*_ (f*>
- * oa4x P “\g*/ -
A21 22

The explicit form of Eq. (8) is given by

2 + [277 Tt — s)g*(s)ds
t %
=—GW [ R.(s+0)f*(s)ds, (%)

FHO+ [T~ 9 s)ds + [>T (SR (s + Ods

= — g*(x) (1 + fOXHRf(y)dy) , (9p)

for the respective ranges x < ¢ =2l —x and —x = { =< x.
The necessary and sufficient conditions for existence
of a solution of Eq. (7) is given by
(‘I’*y X) = 07

where ¥* is a solution to Eq. (8). It can be shown that
this is reducible to the explicit form

f*(x) =0. (10)

Equation (7) will have a unique solution if and only if the
homogeneous adjoint system (8) has only the trivial
solution.

To investigate the solutions of the adjoint system, we
will employ the definitions of the operators with kernels
R, and T, as given in Paper 1,to express Egs. (9a) and
(9b) in terms of an initial-boundary value problem as-
sociated with Eq. (1). First we replace the fixed con~
stant x by the constant u through the relation

p=20—2x,

in order not to confuse it with the variable x in Eq. (1).
Set

FXO) =uilt +1—3p),
gXt) =ui(t —1— zp) exp(—+y),

where

Yy T

o=

L) + B()lds.

Let ui(x —¢ —p) for x = 0,and ui(x +¢) for x = |
represent incident waves propagating in the direction
of the positive and negative x axis, respectively, such
that

ui(s) =0, for s > 0,
ui(s) =ui(—p +0), fors=-—y, (11)
ui(s) =0, for s<0and s> 2 —y,

and where »! and u? are arbitrary C2(C? piecewise)
functions except for the possibility of jump discontinu-
ities at s = 0, and a jump discontinuity in ui(s) only, at
s=2]—pu. :
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These incident waves will give rise to reflected waves
u?(x + ¢ + p),u’(x — #), and transmitted waves
ut(x —t —p),ut(x +¢) in the appropriate half-spaces
x=<0,and x = L.

Employing the operators given in Paper 1, Egs. (9a)
and (9b) reduce to

wt(l—t—p) +ur(l+4H=0 l—p=st=l

wt(®) +ur(t +p) +ul(—t—p =0 0=i=2]—p

respectively.

Upon superposition, it is seen that the system of ad-
joint integral equations correspond to the initial-bound-
ary value problem associated with Eq. (1), where the
initial conditions are given by

w(x,t) =uilx —t —p) +ui(x +¢) fort<—p
and boundary conditions

w(0,8) =u,(0,8) =0, O0=<t=2l—y,

u(l,t) = u,(l,8) =0, l—pus=st=l

and where the solution u(x, {) must be C2 except for the
possibility of a jump discontinuity along the character-
istics x — ¢t =p,x +¢t=0,x + ¢t =21 — p,and u! and u}
must satisfy conditions (11).

The result that «,(0, £) = 0 follows from the fact that
u(x, t) has the form h(x + ¢) for the domain x < 0,
0 =< x +t = 2] — p, since the incident wave u! is constant
here.

One may proceed to show that the boundary conditions
yield u(x, £} = 0 in the triangles bounded by x = 0,x = [,
x—t=0,and x + ¢ =21 — u. In fact, u(x, £{) = 0 along
the sides of the two triangles given by x — ¢t = 0. Hence
there is no jump discontinuity in u(x, {) across the
characteristic x + ¢ = 2] — p at the point x = [ — u/2,
t=1—p/2. Since jump discontinuities [«] associated
with Eq. (1) propagate along the characteristic x + ¢
= 2!/ — u according to the exponential law

[«] = const exp <— %fox[A(s) + B(s)]ds> )

if follows that there is no jump discontinuity along the
characteristic x + ¢ = 21 — p. This implies that

ui(2l —p — 0 = 0, hence f*(I — 3p) = 0 which is equiva-
lent to Eq. (10). Thus the solution to system (7) exists.

One can show further that u(x, ) = 0 in the region
given by x + ¢ > 0, x — ¢t < u. Because of the possibility
of a jump discontinuity along the characteristics
x —t=pu,x +¢=0,o0ne cannot directly proceed to show
that 4i and ! are identically zero. However from the
initial conditions and Eq. (11), it is seen that u(x, {) must
vanish in the domain x — ¢ > p,x + £ < 0 as well as the
domain x + ¢ = 21 — pu, x — ¢ = 21, This implies that the
solution u(x, {) of Eq. (1) in the quarter space x — ¢ > ,
x + 1t > 0, satisfying the boundary conditions

U = ugexXp <— %f‘jz [A(s) + B(s)]ds)

u=ug exp(— B f“jz[A(s) — B(s)]ds)

along the respective characteristics x + { = 0 and
x — t = p, where u, = u(p/2, — p/2), must vanish in the
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domain x + ¢ = 2] — pu,x — ¢t = 21. Since ulx, ¢)

= ugR(0, p; £, 1) where R(0, y; £, 1) is the Riemann func-
tion associated with Eq. (1), where £§ =x + ¢, n=x —1¢
are characteristic coordinates, it is seen that if

R(O,u; &, ) does not vanish in the domain £ = 2] — p,

1 = 21, then we must have », = 0. This implies that

ulx, t) = 0,ui = 0, hence both f* and g* must vanish. On
combining results, we have

Theovem: When L (— 21) = 0, and the reflection and
transmission operators correspond to Eq. (1), the solu-
tion of the system of equations (5), (6a), and (6b) exists.
Furthermore, it is unique, if the Riemann function
R(0, pu; 21 — p, 21) associated with (1), does not vanish
where p = 2] — 2x.

Corollary: Sufficient (but not necessary) conditions
for the solution to be unique are given by either

(i) B=0O,
(ii) B=0,

C+3(B —A")Y+3i(B2—A%9 =0,
C—3(B +A") +3(B2—A42) <0,
where A, B, C are the coefficients of Eq. (1).

Proof: We shall briefly outline the proof for case
(i). Setting

+n)/
R0, p; &, 1) = v(§, m) exp (% yZ A B(s) —A(s)]ds>

the resulting differential equation and boundary condi-
tions for v expressed in characteristic coordinates can
be represented in terms of the following integral equa-
tion for £ = 0,n = u:

3
v = exp <— éfunB(T/Z)dT> — fo fyn[éng + i Dv]d¢an,,
where
D=C +3(B' —A') + {(B2—42).

This equation can be solved by successive approxima-
tions3 and it follows that for case (i), v and v, will be
positive for ¢ = 0,7 = p. It immediately follows that
R(0, p; 21 — p, 21) does not vanish.

The system of equations (5), (6a), and (6b) may be a
natural choice for numerical treatment since they involve
explicitly the measured quantities R, and T,. However
since the system is not always unique, we need to employ
additional information. In the next section we will show
how, by including Eq. (2b) we can obtain stronger unique-
ness results.

4. EXTENSION OF RESULTS

We shall employ Eq. (2b) in conjunction with Egs. (2a)
and (3a) to eliminate the unknown quantity g({) and so
obtain a single integral equation for f(¢). In the term

e [*7R Gy + Dgb)dy

on the right-hand side of Eq. (6b), we replace g(y) by
the expression on the right-hand side of Eq. (2a), and on
account of Eq. (2b), we extend the range of integration
of y from x to 2! — {. In this manner we obtain the
resulting equation

£ + f:T_(s — 1)f(s)ds
—G() f:f(s) fj’:s—tRJy)P_(z — s + y)dyds
=T(x—1) —GDGX)P_(x +1)
~G6 [ fm'tRJy)P_(t —x + y)dy, (12)
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for — x =t < x, where P._(s), defined by Eq. (21) in Paper
1,is given by

P(s) =R_(s) + f:lR_(y)LJs — y)dy.

Thus Eq. (12) and (5) constitute the second system of
equations. Equation (5) is used to eliminate G(x)-1 from
(12). Once the resulting equation is solved for (1),
G(x)? is computed from Eq. (5).

If we employ the relation which is equivalent to Eg.
(22) of Paper 1,

= 2R WPy — ndy
and in addition Eq. (23) from Paper 1,
T () = G(D[Q.(n)

it can be shown that Eq. (5) and Eq. (12) yield the result
that

—L,(—2)] formn=0,

Ff{—x) =0.
We will show next that this system has a unique solu-
tion.
On eliminating G(x)-%, from Eq. (12) we obtain the cor-
responding homogeneous equation,
x X
FO + [T (s = 0f()ds — GO [k, s)f(s)ds = 0,
—x=1l=x,
where
xX+ts
k(t, s) =P (x + ¢ (1 + fo R, (y)dy
21+ s~ t
.. ROIPL —s+ydy.

The adjoint equation is given by

X+ f_: T (t — s)f *(s)ds — G(l)f_:k(s, Df X(s)ds = 0,
—x=t=x. (13)

To show that this has only the trivial solution, we want
to interpret the equation in terms of an initial boundary
value problem associated with Eq. (1). Replace the fixed
parameter x by u/2, and set

t=t"—3p, O =uilt).
Then Eq. (13) becomes, for 0 = ¢’ < p, on dropping the
primes on ¢'.

e <uf (1) + ftT_(t — s)uf(s)ds) = ek fonﬁ(s, Hul(s)ds,
° (14)
where

k(s,t) =P.(s) <1 + f()tl‘h(y)dy)
+ fzz " P (s —t +y)dy.

It is easily seen that if »?(x + t) represents an incident
wave propagating in the direction of negative x axis,
such that »?(s) = 0 for s < 0,and s > y, then the left-
hand side of Eq. (14) corresponds to the transmitted
wave ut(x + t) at x = 0. Note that uf(s) may have a
jump discontinuity at s =0 or s = p.
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To interpret the right-hand side, we must set
ui{x — ¢ — 2]) to be a wave propagatmg in the direction
of the positive x axis such that ui(s) = 0 for s > 0, and
such that it produces a transmitted wave ul(x —t —20)
which nullifies the reflected wave u7(x — ) at x = [, for
0 =t = 21. From the Appendix, it follows that

ul(n) = —e’- fo—nu_i(S)P_(s +2l+mds, —pu=n=0,

—e¥- foyu_i(s)P_(s + 21 + n)ds, —2l=n=—p.

We will require that #i(s) be constant for s = — 21, such
that it is continuous at s = — 2], yielding

ui(n) = —e?- fo#u_i(s)P_(s)ds, s=—2[
This incident wave will produce a reflected wave
ul(x + ¢ + 20), which at x = 0 has the form

ur(t +20) = f B (t +21 + shui(s)ds

+ ui(—20) f R, (y)dy.

Combining these results we see that the right-hand side
of Eq.(14) is equal to

—u}:(—t—Zl)~uI(t + 2]),

for 0 < ¢ = p, where in this range ! is constant.

The adjoint integral equation is thus equivalent to
the initial-boundary value problem for u(x, {) which
satisfies Eq. (1), where the initial conditions are

wl, t) =ui(x —t —20) +ui(x +1¢), fort<-—2]
where »} and »! must vanish in the domains indicated
above, and boundary conditions are

%, (0,¢) = u(0,¢) =0, for 0 =¢=y,

u bty =u(l,t) =0, for—I=t=<1

Since u} is continuous, the only possible jump discon-
tinuities may occur along the characteristics x + { =0
and x + ¢ = p.

As for the previous case, one may start from the
boundary conditions and show that there can be no jump
discontinuity along x + ¢ = u. However, unlike the prev-
ious case, one can show further that there can be no
jump discontinuity along x + £ = 0, and hence the only
possible solution to the inital boundary value problem
is the trivial solution u = u} = ! = 0.

Thus the adjoint equation has only the trivial solu-
tion, hence the original equation is unique.

Theovem: Y L,(—21) = 0, system (5) and (12) has a
unique solution for f(f), which vanishes at { = — x.

For completeness we should mention that the solution
of system (5) and (12) will satisfy the original set of
Egs. (2a), (2b), (3a), and (3b). Since it does not follow
directly, we will outline the approach.

Because of the relationships between the scattering
operators given by Eqs. (22) and (23) of Paper 1, it can be
shown that the right-hand side of Eq. (12) vanishes not
only for { = — x as was indicated above, but for all
t = — x. Hence Eq. (12) may be used to define f(f) = 0
for t = — x. We employ the left-hand side of Eq. (2a) to
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define a function F(¢) for all ¢ = x. Equation (5) then
indicates that g(¢) vanishes for ¢ = 27 + x. With the func-
tion z(f) so defined Eq. (12) may be split up to yield
equations for f(t} similar to Eq. (3a) and Eq. (3b) but with
the range of integration in the terms containing g(y) from
y = x to y = 21 — ¢{. The resulting sets of equations are
then used to eliminate f(¢). In the resulting single inte-
gral equation for g(¢), the properties of the scattering
operators given by Eqgs. (17) and (19) of Paper 1, are
used to simplify the kernel. It can then be shown on using
the result that g(f) = 0 for ¢ = 2] + x, that the integral
equation reduces to a homogeneous Volterra integral
equation for 2/ — x = { = 21 + x. It follows immediately
that g(¢) = 0 in this range, and the resulting set of equa-
tions correspond to Eqgs. (2a), (2b), (3a), and (3b).

APPENDIX

Let ui(x + ) be an arbitrary incident wave propagating
in the direction of the negative x axis, such that ui(s) =0
for s < 0. This will generate a reflected wave u”(x — £)
in the half-space x = I, such that 7 (s) = 0 for s = 2/,
and

upm = [F7"R (s + mui(s)ds.
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Let ui(x — ¢t — 21) be an incident wave propagating in the
direction of the positive x axis, such that 4i(s) =0,
s > 0, and chosen so that it produces a transmitted wave
ul(x —t — 2]) in the half-space x = I which nullifies
u?{x — 1)

wrlx —t) +ut(x—¢t—-20) =0 x=1

We want to express u} in terms of »?. This is achieved
by noting that,n < 0,

al = el + [01,n - ul(s)s)
— e (u_'(n +20 + (L~ ulls + Zl)ds>
= — e’ ["ul(P.(s + 21 + mds,

where

Pm=R(n + f:lR_(y)L+(n —yldy.

'V, H. Weston, J. Math. Phys. 13, 1952 (1972).

2V. H. Weston and R. J. Kreuger, J. Math. Phys. 14, 406 (1973).

P. R. Garabedian, Partial Differential Equations (Wiley, New York,
1964).
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Several exact results are given for the problem of enumerating arrangements of ¢ indistinguishable

dumbbells on a 2 X n array of compartments.

1. INTRODUCTION

McQuistan and Lichtman! have investigated the follow-
ing dimer problem which has bearing on several areas
of physics, Consider a 2 X » rectangular array of com-
partments (a lattice space) and g dumbbell-shaped
objects, * *. Let A(g, ») be the number of ways in
which the ¢ dumbbells may be placed in the array such
that the two ends of each dumbbell are in two horizontally
or vertically adjacent compartments and no two dumb-
bells have ends which share a compartment. For example
example if ¢ = 2 and »# = 3, the possibilities are:

! 1t I !
| ! R
. T, N
1 -
! 1 T
[ - L

In this case A(2,3) = 11. The following recurrence is
known1:

A(qyn)=A(q1n'_1)+ ZA(q_lyn“I)

+Alg—1,n—2)— Alg —3,n—3). (1)
Clearly A(g,») = 0 if ¢ > n so the array of numbers

Alg, n) is triangular, part of which is given by the follow-
ing table:

2
11 3
10 29 26 5

N B W N = O
N S A

13 56 94 56 8

McQuistan and Lichtman remark that exact solutions
for problems of this sort (2 or more rows and/or 2 or
more dimensions) have been obtained for only very
special cases,2:3 i.e,,a 2-dimensional array completely
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covered with dumbbells, In many other investigations,
approximation methods have been utilized.

In this paper we obtain some explicit formulas for
A(g, n), some generating functions, another representa-
tion of the problem, and another recurrence. Also we
shall see how A(g, ») is related to other well-known
functions.

2, THE GENERATING FUNCTION AND ITS
COEFFICIENTS

Put n
Lx) = 20 Alg,n)xe.
q=0

Then by (1) and a little manipulation,

L) = (2x + 1)f, o(x) + xf,,,(x) — 23/, (%)
(n= 0),
For example,
fo(x) =1,
fix)y=1+x,
folx) =1+ 4x + 2x2
fax) =1+ Tx + 11x2 + 3x3,

(2)

which are verified by the above table, Next put

o0

Glx,y) = Eofn(x)y”-

n=

(3)

Using (2) and the first 3 equations under (2) as initial
conditions, we find

4

Thus, (4) gives the ordinary bivariate generating function
for A(g, n). Incidentally, with y = 1, (4) becomes (15) of
the McQuistan—-Lichtman paper.! Clearly the usual
methods of expanding (4) yield fairly complicated
formulas, Of these, one of the more compact is, by the
multinomial theorem,

G(x,y) = (1 —xy)/(1 — 2xy — y — xy2 + x3y3),

1
A(q’ ”) = Z) Z)
i=0 b+c+3d=g+i
a+2b+c+3d=n+i

+b+c+d
a,b,c,d ’

—

where (2;8c+4) is a multinomial coefficient,
Put

A=1-—y,
B=_2y_y2:
C=y3s

so that, by (4),

—_ -1
G(x,y) = —11—?’;—3’ <1+:4§x+§x> . (5)

Since A, B, and C are functions of ¥ only, we may expand
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the right side of (5) to obtain G(x,y) as a power series
in x whose coefficients involve y [compare with (3)].
This may be expressed by
1—xy & &k { B\*#J I ohens
G,y =——27, Z)() (_ —) <~ 9) xk+23,  (6)
1—y r=0 j=0\j A A

Alg,n) = é()) WZSO] (— 1)i24-35k <(I —] ZJ') (q - 3j> <n

]':
-1 {(g~1)/3]
=0

-2
k=0 j

Y

—2j - —3j —

7 (7%

where [x] is the largest integer less than or equal to x.
Thus, we may view A(g, ») as a polynomial in » of degree
q. The coefficient of #n? appears in the first double sum
when j = 0. In this case (j = 0) the first double sum
becomes

q
1

2q-k q> el
k?o (k q!

(— 1)72¢-3j-k-1 (‘1

(n—k)q.

But the coefficient of #¢ in (n — %), is 1 and
q 1 q
> 2q-k<q) 2.
E=0 B/ q! q!

Therefore, A(g, ») is a polynomial in z as follows.

3¢
Alg, n) =;nq +Cinal+ o0 + C,m+ Cy,

(M

where the C's depend on ¢ only. If we put AA(g, n) =
A(g, n + 1) — Alg, n), then (7) implies the recurrence

AqA(qy n) = 34,

3. ANOTHER FORMULA AND ASSOCIATED FUNCTIONS

The occupation of 2 X n arrays with dumbbells may be
expressed in terms of an occupancy problem with re-
stricted positions. Consider 3 sets of cells labeled as
follows:

Lz+1 2,2+2 n2n 1,2 2,3 T a—1,n
I I
n+l,n+2n+2,n+3 " 2m—1,2n (8)

I

Let the first » cells, I, represent the n vertical pairs of
compartments of the 2 X »n array, let the next set, II, of

n — 1 cells represent the » — 1 horizontally adjacent
pairs of compartments in the first row and let the final

n — 1 cells, III, be the horizontally adjacent pairs of com-
partments of the second row. Thus, (8) is equivalent to

n+l|ln+2|n+3|n+4 2n

Each of the cells of (8) has 2 “labeling” numbers, There-
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If we carry through with the rather tedious details of
expanding the right side of (6) in terms of y, thus getting
a power series of x and y, we find that the coefficient of
x4y” is another (as to be expected) complicated formula.
But this time we observe some interesting results. The
coefficient is

)
) ¢

—2j—k—
qg—2j—1

1>,

fore, A(g, ) is the number of ways we may distribute ¢
like objects, one per cell, into (8) such that no 2 cells
containing objects have a labeling number in common,
The advent that 2 occupied cells do share a labeling
number is equivalent to the ends of 2 dumbbells sharing
a compartment, a situation which is forbidden.

Given that j of the g objects are in certain of the cells
of I, there are » and v (u + v = g — j) objects that are to
be distributed among the nonforbidden positions of II and
III respectively. For example, if » = 11,j = 3, and the
checks denote the cells of I occupied by the 3 objects,
then the set of cells I, II, and III are

I N S A
1 2 3 4 5 6 7 8 9 10 11
- .
gapof 1 gap of 3 gap of 4
(deleting the second labeling number of each cell),
g X *x x _  __x x
1,2 2,3 3,4 4,5 5,6 6,7 7,8 8,9 9,10 10,11’
Im x x x x x

(deleting the labeling numbers)

where the x's denote forbidden positions. Clearly II and
III are always identical, If u objects occupy II thenq —

Jj —u = v objects occupy III, We define a gap of m to be
m successive unoccupied cells of I. Thus a gap of m
gives rise to m — 1 permissible cells in II and III. But
of those m — 1 permissible positions, no 2 adjacent ones
may be occupied, The number of ways that we may place
i objects inm — 1 cells so that no 2 adjacent cells are
occupied is

)

(A well-known elementary fact asserts that the number
of ways that » plus signs and s minus signs may be
arranged in a row so that no 2 minus signs are adjacent
is (v}1); the above sentence is equivalent to this), If cell
a, of I is occupied and if the next cell in I to the right of
a, which is occupied is a, then the corresponding gap is
a, — a; — 1. Allowing j to range from 0 to ¢ and account-
ing for all possible distribution of the j objects in I we
find

q
i=0 ag<a)<:rr<agi<n+
utv=g-j

1f(j,u)f(j, v), (9)

where a, = 0 (the other a's are indices) and where
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A, u)

= flu; ag, a1y ..., a))

ay—ag—1—i4\ (a,— ay — 1 — 4
14 V(42— oy 2
= X : >< : > ... (10)
i1+...+ij+1:u Zl Zz
(a]- —a—1- ZJ> <n —a; ’j+1>
4 Lja1

Thus (9) provides A(g, ») with a more harmonious formula
than do some of the earlier equations,

Further insight into the intricate nature of A(q, n)
may be made through a study of f(j,u). Actually, some
properties of f(j,u) are well known, Putting

oo (@1 (=12
n—a, (i=j +1)

it suffices to define and examine

b, — i b — i
&by, ..b)= X (1‘ 1) ('. ’>.
i1+---+ir=u ll ZT

Then
) r o b, — i X
283y, ..., b)) =11 ( ko ’f> 2, (11)
=0 k=1 ik;o Zk
But the function

> fo— 1

uy(z) = 23 ( i >zi (12)
i=0 z
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is familiar. The numbers u,(1) are the Fibonacci
numbers, The polynomial ,(z) has been extensively
studied by many investigators.? Two expressions for
uy(2) are

Uy (2) = (— 1)6x5/2U,(i/2Vx), (*)
where i = v— 1 and U, (2) = sin(b + 1)8/sinf(z = cosg);
U,(z) is a Chebyshev polynomial.

ub(z) =2-01g71[(1 + @)+l — (1 — oz)’“l],

o= (1+ &)1/2, (*%
[Compare (**) with the Binet form of the Fibonacci
numbers., ]

Using (11) and (12) it is easily seen that

o0

(o]
2 2 &by ,b)2 eyl =

"
Ina —Y; —zy%)—l.

8o, 5,=00=0 i=1

In a subsequent paper we shall show how the ideas
presented in the latter part of this paper may be utilized
and extended to enumerate arrangements of g dimers on
anm X n lattice where it is not necessary to assume
that the dimers are numerous enough to completely
cover the lattice,

'R. B. McQuistan and S. J. Lichtman, J. Math. Phys. 11, 3095 (1970).
M. E. Fisher, Phys. Rev. 124, 1664 (1961).

*P. W. Kasteleyn, Physica 27, 1209 (1961).

*J. Riordan, Combinatorial Identities (Wiley, New York, 1968), pp.
75, 76, 242.
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The multiplicative stochastic process treatment of the time development of the density matrix for a
subsystem in contact with a heat reservoir is applied to the specific problem of the relaxation of a
nuclear magnetic moment which is interacting with a fluctuating magnetic environment. A model for
the fluctuating interaction Hamiltonian, appropriate for the magnetic moment case, is presented, and
the Bloch equations for nuclear magnetic relaxation are constructed as a consequence. Agreement

with empirical observations is noted.

1. INTRODUCTION

Consider a subsystem in contact with a heat reser-
voir. The Hamiltonians for the subsystem and for the
reservoir will be denoted by Hg and Hy, respectively.
It will be assumed that the state of the reservoir is
given, on the average, by its equilibrium state through-
out all time. Therefore, the interaction between the
subsystem and the reservoir will be represented by a
stationary, purely random, Gaussian interaction Hamil-
tonian, H(f).1—4

Latin indices will be used to denote eigenstates of
the subsystem Hamiltonian:

Hgla) = E;l9), 8))

Greek indices will be used to denote reservoir eigen-
states:

Hplo) = E _la). (2)

The identity matrices for the subsystem eigenstate
manifold and for the reservoir eigenstate manifold are
denoted by 1g and 1, respectively. The total Hamiltonian
which acts in the direct product manifold of the sub-
system manifold and the reservoir manifold is given by

H, 1oy =Hg® 1, + 15 ® Hp + H(). (3)

Clearly, H(¢) acts in the direct product manifold since
it provides the interaction coupling. It has a matrix
representation in the direct product manifold given by

B, 550 = (e |GIREO) 8. (a)

The Schrédinger wavefunction ¥(£) may be expanded in
terms of direct product basis states giving

W) =22 2 Ci (Oli]a). (5)
o

The density matrix for the complete system is defined

by

Piazall) = COC,, ). (6)

Two physically motivated assumptions are imposed in
order to arrive at a dynamical equation for the density
matrix for the subsystem only. The assumptions are:
(a) the interaction is energy conserving which means

H;,;3¢) =0 unlessE, +E,=E, + B, )
and (2) the averaged total density matrix factors for all
times into a product of a time-dependent averaged sub-
system density matrix and a time-independent averaged
reservoir density matrix3:
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<pia]'a(t)> —’<Pij(t))(p aﬂ>’ (8)
where

049 = (1/Q) expl— E /K10 o, ©)
with

QR=ZGXP(—EQ/KBT), (10)

where K is Boltzmann's constant and 7 is the
temperature.

The resulting dynamical equation for the averaged
subsystem density matrix is3

Z (p, @) =— (B — EX0,{) — Tiyinpirp @, (1)
where T';;;:;
Tiji’]’ = E Z; Ria] ai'a']'ct'(l/QR) exP(~Ea’/KBT) (12)

in which R; ;45

R ipiarys = 010 qur Ze} ,Z_) Q,800%06'5’

+ 6jj'653'ze: § Qee'ioci'a'ee’ - ZQ]Bj'ﬂ'i'a'ia’ (13)

, is defined by3

s 18 defined by3

wherein @; ;54175 18 determined by the second mo-
ments of H(#) through the definition3

(I?iajg(t)ﬁi'a'j'gv(s» = ZQiajei'a']lafé(t —8). (14

The assumption of energy conservation may be used to
show

Ti]i'j' = T"i"]'i]
which is a generalization of the detailed balancing con-
dition for a thermally buffered system.

These formal considerations provide a context in
which to present the stochastic description of the re-
laxation of a magnetic moment in an environment
which produces a fluctuating magnetic field. In the
next section a specific model for the interaction piece
of the Hamiltonian will be introduced, and the Bloch
equations will be constructed from the interaction.

!Il. DERIVATION OF BLOCH'S EQUATIONS

Denoting the x,y, and z components of the averaged
magnetic moment by M_,M,, and M, the Bloch equations
are given by

d

exp[— (E, + E; — E;; — E ) /2K,T] (15)

Z M0 == 7= 01,0 ~ M, (@), (16)
2 ) :—leMx(t) — (B, — E,) M,(1), an
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d

970 :-%—My(t) + (B, — E,)M(#), (18)
in which T, is the longitudinal relaxation time and T, is
the transverse relaxation time. M, () is the asymptotm
equilibrium value of M ,(¢), and is nonzero if the whole
system is at temperature T, and in the presence of a
constant external magnetic field along the z axis. Under
these conditions, M, (©) for a spin 1 magnetic moment
will be given by

exp(— E, /K T) — exp(— E /K _T)
exp(— E,/KpT) + exp(— E /K;T)’

where E, and E are the energies for the magnetic moment
when it is parallel and antiparallel to the external field.

Redfield has reviewed the problem of deriving the
Bloch equations from a density matrix equation, which
equation is often referred to as Redfield's equation.5
The derivation of Redfield's equation utilizes 2nd-order
perturbation theory for short time intervals, and makes
minimal use of the stochastic properties of the inter-
action.> The derivation of the equation (11)3 used in this
paper makes no perturbation series approximations and
depends critically upon the stochastic nature of the
interaction. Kubo has emphasized the difficulty in ob-
taining the Boltzmann factors in M, () when a stochas-
tic approach to this problem is attempted.® In this pre-
sent paper it is seen how the Boltzmann factors appear
naturally through the factorization of the total density
matrix for a subsystem and a reservoir,3

The structure of the interaction Hamiltonian to be
used here depends upon the following considerations:

M, {0) = (19)

(1) The magnetic moment will correspond to a spin
 object.

(2) The effect of the reservoir will be manifested by an
effective spin 3 reservoir magnetic moment.

(3) The interaction will have the same form as in the
Heisenberg ferromagnetic interaction, but with fluctu-
ating coupling constants.

(4) Energy will be conserved by the interaction.

Both the subsystem and the reservoir correspond with
two state manifolds, and consequently Pauli spin ma-
trices may be used to represent both the magnetic
moment and the effective reservoir magnetic moment.
The interaction Hamilfonian is, then

B, p0) = lof, 05,557 (t) + 03,0383 (1] 6,58, , + 0% 02,R% (1),

wherein the Pauli spin matrices are (20)
01 0 —i
¥
T O —}(1 0)’ 7 q(z 0)’
(21)

1 0
iV (0 —1)'

The factor 6,6, in (20) provides for energy conserva-
tion during the {ransmon and it appears with the x and
vy components only because the 2 component terms
automatically conserve energy. Both *(f) and %(¢)
represent fluctuating coupling coeificients. They factor
completely in the x and v terms because the interaction
Hamiltonian is Hermitian. The z component, however,
contains different coupling coefficients for each possible
choice of indices and is, therefore, given with appropri-
ate indices. The Hermiticity of the z component terms
is guaranteed by its form. It is assumed that all six
coupling coefficients are purely random, stationary,
Gaussian stochastic processes with average values of
zero. Furthermore, no cross correlations are assumed

X ms_ L M. Mt A0 Rfa T Coloscass 1074

to exist, and the x and y fluctuations have identical
second moments. These conditions are expressed by

Gx () = R () = Rz f1)) =0
Rx (02 (S)) = Bx (02 (S)) = Ry (% (S
= Géfa(t)hfﬁ(s» = 0» (23)

fori=1,2j=1,2a =1,2 and 8 = 1, 2 but not both
i=janda =8,

Rx ()= (S) = (RYORI(S) = 2Q*»5(t — S)

fori=1,2ando=1,2,
(22)

and N (24)
Gz (02 (S) = 2Q=6(t — S).

In a constant external magnetic field directed along the
z axis, the magnetic moment takes on two energy values
for its spin parallel or antiparallel with the external
field. These energies are given by

E, =+gpH and E = gBH, (25)

where g is the nuclear g factor, 8 is the nuclear magne-
ton, and H is the external field strength, for the case of
a nuclear magnetic moment such as a proton. Equations
(25) and (20) lead to a special instance of (11) with the
requirement that 7', ..., be determined from (20) using
(22), (23), and (24).

In order to get an expression for T, Egs. (12), (13),
and (14) will be used, in reverse order. An outline of
this computation follows.

Equations (14), (20), (23), and (24) lead to

iji%y

Qiozjﬂi'a]'ﬁ’ (U UC(BU :U 'B' +U UDLBU layrﬂ)
XQx' 1861(1. 1'6'6 I o otjoaBGI'J'o 'B'Q Gtt'baa" (26)

In order to calculate R; 5,5 according to (13), some
special cases of (26) are needed.

. x X x x Y ¥ y ¥
ij ? Qjse0%0%s’ = ? ? (050986 T01 e * 976086551 Tgrgr)
X,y 2z x 2 z
XQ 5J~9f698658¢5 itg? -+ "je"se' O'ijﬂ'eyﬂv Q 6]'6 659'

¥ ¥ 5% Xy
= 0,708 (97675,95,%78 * 97605,05,078)Q

Bi~3
+ aﬁoﬂﬂoﬂ.aaﬂ,Q . (27)
EZ QGS Tat'a’os’
o= 6 '(omozaozaoat + oouofaota m)Q ?
+050% F U000, Q% (28)

Therefore, it follows that

Rigjpiraryst = Oiir0nar); 0ps: (03505, 05,076 + 03403,05,07
+ 0 glaolao-al
+ (8,18 44
— 200,05 05:0 510 T 03500%51 03100 00)
XQ 76,5005,00,0 or; 0%,1Q%0,10gq0

29
To get T,;,,;» according to (12) requires (29)

.y
+02,07,07,02.)Q

0505505, 058 +8,3:058:05,05 0 0051406
20;3'“35'“:";‘

¥ y
?Rmm, witer = 01i0;;001g 405,105, 0%, . Ol 03100t 0010 Fer?

+ 0% 07 107 0y + 0% 07 .am,o”,,)Q”

+ (8,07 0%, .0 O wsr T 0y S SN L S [ 1

31 a'a iV a
= 2(07;107g1 0700 1je + 033007500707 1,0Q7 7811516, 0655
—205,00%15:07,075,,:@78;. (30)
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Therefore,

1 E,

Ti;:i';' = %: g; Riajotl’a'j'a' -é-; exp (—~ E;f)

1 E]
:6”,5”,%2 1 W-Q;exp *E‘;f

(- ra)lfe
*2[1~§;e"p('m o

1
-+ éii'éjj'zQz e 25;1']!6;]2(1 — 5”.')Qx.y Q—R

E.
X exp (- K—g%—) — 28,;6,,:0;,Q%, (31)

wherein (21) was used as well as (1/Q ) exp(— E,/KT)
+(1/Q ) exp(— E,/K,T) = 1. Several special cases of
(31) will be used and are given by

T,y =2Q%9 +2Q% fori=j, (32)

Tin= 4Qx.y[1 - (1/QR) exp(— Ei/KBT)]: (33)

T =— 4Q*¥(1/Q ) exp(— E,/K,T) fori=i4, (34)

(3%)

All other choices of indices for T, lead to zero
values as with (35). This situation greatly simplifies
Eq. (11).

The x,¥, and z components of the magnetic moment
are given, on the average, in terms of the averaged den-
sity matrix, (p;;(), by

Mx(t) =gB Z;C?j<Pij(t)>, (36)
ij

M, =8 T 02, o, 0, (37

M, () = g8 T 0%,(p,, (). (38)
ij

Using (21) gives

M () = gB(p N +{py (D), (39)
My(t) =gBi((921(t)) - (plz(t»), (40)
M, () = gBl{p 1, () — Py M. {41)

From (11) and (32)—(35) it follows that

L pypt) = — iE, ~ B pya) — Typup(pyplt),  (42)
L (porth = = B, — E,Xpyy () — Typpo(ppy @),  (43)
(49)

% (911(5» = T1111(1011(t)> - Tllzg(ng(t»y

& (0330 == T11(P11(0) = Topaalpaal®.  (49)

The combination of (32)-(35), (39)-(41), and (42)—(45)
gives
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d

7 M) = (B, —EOM (6) — 2Q%Y + QM (1),  (46)
Lm0 =— (B,— EM,0 — 2@=> +QIM,(), (4
%Mz(’) =—4Q=y(M,(8) — M (), (48)
where
- i E, E,

Equations (46)~(49) are clearly equivalent with Eqs. (16)
-(19) when the identifications
1/7,=4Q*y and

/Ty =2(Q*7 + Q%) (50)

are made.

It should be noted that when there is no external, con-
stant magnetic field present, then £, = E, and it would
be expected in isotropic media that the second moments
of the fluctuating magnetic field produced by the reser-
voir would be isotropic, which means

QF = Q*v. (51)
Therefore, (50) shows that T, = T, and the relaxation is
isotropic. In the presence of an external, constant field,
or in the case of anisotropic media @2 and @*¥ will not
necessarily remain equal, and both @2 > @*Y and @*
> @* lead to the special cases T, > T, and T, ~ §T,,
respectively. These special cases are observed
experimentally.?

111, CONCLUSION

The theory of multiplicative stochastic processes
has been used to arrive at a density matrix description
of a subsystem in contact with a thermal reservoir, In
this paper an application to the problem of the relaxa-
tion of a magnetic moment interacting with the fluctuat-
ing magnetic environment of a reservoir has been made.
Kubo's dilemma concerning how to properly include the
Boltzmann factors has been resolved. Moreover, the
derivation of Bloch's equations did not require the
approximation of 2nd-order perturbation theory for
short time intervals because the stochastic properties
of the fluctuating quantities were fully utilized.

The quantitative determination of @* and @* in
terms of the exact microscopic interactions involved
remains as a problem. This problem may be raised
in the more general setting of Sec.1 with respect to
quantitatively computing @; ;g in Eq. (14) from a
microscopic theory of the exact interactions. This
problem will be treated elsewhere.
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On normalization problems of the path integral method*
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Ambiguities of the path and of normalization in Feynman’s path integral method are discussed. The
investigation shows that the Feynman path integral method possesses inherent ambiguities, which
can be resolved by a prescription which agrees completely with the Schrédinger equation.

INTRODUCTION

Recently, many! authors have attempted to derive
quantum mechanical equations from the path integral
method. One difficulty was that one does not get unique
equations. It was claimed that the ambiguity resided in
the choice of path and the approximation (of the short
time action) used. In the next section, we point out that
this ambiguity is the logical consequence of the Feynman
theory and that the ambiguity of normalization apparent-
ly unnoticed till now, is equivalent to the ambiguity of
path, in the sense that every ambiguity in the resulting
equations as a consequence of the path ambiguity-—can
also be obtained by an alterations in the normalization.

Pauli and later DeWitt2 approached the Feynman
theory in a different way. They first started from the
properties of the propagator function K and together
with the pre-determined equation, they tried to obtain
an explicit expression of K for small time intervals.

It worked fine for simple cases, but when DeWitt in-
vestigated the most general Lagrangian, the asymptotic
form of K did not quite satisfy the equation obtained
from the canonical quantization procedure.

Cheng3 has obtained an equation using the classical
action where there is no ambiguity of path. The result
was the same as that of DeWitt except a coefficient
of same term has the factor ; instead of ;.

This paper is aimed to resolve all the above difficul-
ties. The organization of the paper is as follows. In
Sec. 1, we will study the basic Feynman formalism and
the inherent ambiguities. In Sec. 2, we will follow Pauli
and find a new function Ko which will satisfy Schro-
dinger equation. In the brief Sec.3, we will show the
normalization obtained from Sec. 2 will cancel Cheng's
extra term, thereby obtaining Schrodinger equation.

1. PRELIMINARIES
The basic definition of the propagator function K is

K=" expl(i/n) [ LG,x, Hat] Dx, 1.1)
X t

where [Dx is the sum over all the paths allowed by
quantum mechanics. The condition is that the paths
should go in one direction4 in time only. This can be
incorporated into (1.1) by the lattice calculation,i.e.,
by dividing up the time interval into infinitesimal ones
and for each time vary the positions along the position
axis. In the relativistic case, the condition is presum-
ably different and causality may have to be incorporated
as shown by Feynman.5

In the lattice calculation, we write (see Appendix C),
exp[(i/n)S, (x ", t": xo1, to1)]
A" x":tol) xo- 1)
exp[(i/R)Sy (62, t1: x', )]
) AL xl: ', x")

K", t": 2 t") = lim [+« |
€0

dNyo-t.

- ediyt

(1.2)
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where d¥x i is the volume element in the generalized co-
ordinate space xi= (xf,...,x%), e =¢" —t'/a,and 4 is
the normalization function. (The meaning of S,will be
explained below). In order that (1.2) is valid, we must
have the limiting condition

2

(1.3)

,, . exp|(i/f)S, (x ", t" x', t)
lim [T exp<1% , Ldt>Dx = lim ol S //, 7 /, ]
e-0 ¥ t e—0 A(t,x:t,x)

where Sy means the action evaluated by a path or an
approximation. Each time in the integrand of (1.2) must
be the limit of an exact K for sum path and sum S. This
is the center of (1.3). Therefore, if the left-hand side

of (1. 3) is definitely known, for different Sy»A has to be
adjusted, and vice versa. Indeed as shown in the Appen-
dix, fixing the normalization and varying Sg is equivalent
to fixing a path and varying the normalization.® If we
consider the classical path, S becomes S.), the classical
action, and we have

K" "% %' ) = ——— e exp [(i/B)Sc1 (6 £% %', t')
F(t",x"t,x')
(1.4)
for some F. Therefore,for classical path,
At t'x) « F@"',x";t'x’").
€0
Now let us examine
vix"t") = fK(x", tx, UW, E )d N (1.5)

If K is a predetermined function, then (1. 5) will yield a
unique set of wavefunctions for given boundary con-
ditions, i.e., it will yield unique quantum mechanical
equations. However, K is only partially determined up
to this point because one wishes to get A of (1.3) from
(1.5). It is unjustified to expect both to get A and
unique equations. If the equation is written as
2

iN b =0 g ¥ e 0 =¥ 50 (1.6)
then, Appendix A shows that the Lagrangian will determine
Jy and f, uniquely but not f;.6 Therefore, additional inform-
ation is needed to determine A. The next logical step,
then, is to assume an additional information that the
equation obtained from the commutation relations are
valid. However, we shall see that even here A is not
altogether unique.

2. PAULI APPROACH

We consider the most general classical Lagrangian
L =3g,;%'% +a,xt +v, (2.1)

where g;;,a,;,v are functions of x and ¢, The correspond-
ing Hamiltonian is
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H=3g4p,—a,)gV2%gi(p;—a)gVs +v  (2.2)

where g = det (g;;) and g'*g,; = 61j. Equation (2.2) can be
directly translated into quantum mechanical equation if
we use

h 3
g1/4p gVa==_2

T 31 2.3)

which is obtained from commutation relations of p, and

x;.

The result of the canonical quantization is
= O = = 5D
(z‘ﬁ 37 >’J/ =0, ,¥= zﬁﬁw
d L
+ g2 L ( g 3 ) it 2
£ % EPTAd
—%iﬁg’l/z(ai—igl/zaﬁ\lx—%aiaiw —w =0, (2.4
x
where ai = giig,;. Following Pauli's approach starting
from the Hamilton-Jacobi equation, we can construct
an explicit expression of the classical action of (2.1).
The result is
Scl( " tﬂ_xr tr)
[zgU Axiaxd + 5 B Axidxidxt + C,J,dmciAxJAxle’a

, 2g;
+0(a5x)] + ajaxi + 4 (a,.,j taj, + at” ) AxIAXT

—(a'ia’; + v') e + O(A3x, €2) + Oleax) * (2.5)
where
Axt=x"i—x'i,
Bij= &ij, k¥ &ini + i, i
Ciim =8y m T &uij T &ikus T &uin ¥ &t i
+ g, 5 — & (i, m] [k, n]’
+ (i, m} [lj,n]" + [il, m]' [jk,n]'),
and
(G, k] =300+ 8ins —&jui)- (2.6)

Pauli and DeWitt consider

K ("t x', 1) = [(2miR) M2] L g"-V2pVa(x”, t" &', ) g " V4
x exp[(i /M)S., (x", t": x',¢)], (2.7)

where D = det (—82S_,/0x"13x'7). From (2.5) we can get
the explicit expression for K,

K, (x"t" x',t') = [@nife) W2} Y1 + L R’ AxiAX]
+ higher orders) x exp[(:/)S ], (2.8)
where
Ry = —g" Ry,
and
’ 2 ’ ’ ’ ’
it = 2@ 0 — &tk — &hjour T &ha,13)
+ g mn (if, m] [kl n]" — (&, m]'[il,n]").
If we operate K, by O,. ,., we get
Opn K (" 172, 8) =[5 BR' + O(ax) + 0()K,, (2.9)

where R* = g’#R ;.
The rest of the properties of K _ are (also of K):
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K*(x"t" x',t") =K (&', t':x", ") (2.10)
which is demanded by the Hermiticity of H and property
2,

2. K, (x"t"x',t')>6("—x',t)as e >0 2.11)
where 6{x”" — x’, t') is the delta function in the curvilinear
space.

The 5 R‘i2term of (2.9) is incompatible with the
requirements (1.6) and (2.11). To remedy this, DeWitt
has formed a new Hamiltonian which has the add1t10nal
& R'Ti% to the original H of (2. 4), thus removing the un-
satisfactory features. This is a rather arbitrary step,
and in the spirit of the foregoing section, it is more
natural to modify K. To give an example, we consider

(2.12)

Then, since the new factor only depends on x' and ¢,

Oyn Ko = (zh ve <’ﬁ1’; e) +0(e) + 0,;~,t~> K,
X (1 +2ifiR'e) = (—2hR" + LhR' + 0(ax)
+ O(e)K, (2.13)

which satisfies (2.4). However, (2.12) is not the only
possible one. We write

Ky(x"t": x',t") = (1 + 3ihR'e + O(e)K,

K(x" t"x',t') = [(2nife)¥2-1(1 + ifieA’ + E};axiAx]
+ higher order) x exp[(z’/ﬁ)scl(x", rx’, 1)), (2.14)

where A and E,; involve derivatives of g, 80 that K will
reduce to the well known form when &3j ‘s are constant.
The Appendix shows that if —A"—g"#E], + R'/6 = 0, then
K of (2.14) satisfies (2.4).

Note that, (2. 14) also satisfies (2.10) and (2.11)7up to
order € and A%. The higher-order terms are not neces-
sary if we use the lattice calculation. However, only one
of (2.16) satisfies the group property up to order ¢, and
therefore, only one is the asymptotic K up to order €.

3. SHORT-TIME CALCULATION

In his calculation, Cheng did not recognize the ambigu-~
ity of normalization and he considers

= [(2mihe)¥2]-1 exp[(i/h)S , (x" t" x', )]

for small ¢. From the arguments so far given, it is
clear why we will not get Eq. (2.4)

(3.1)

Suppose we do the same calculation using K of (2. 14).
To make it easier, we first write K as
K" t":x', ) = [(2mihe)¥2]-1(1 + {HA")

(1+ Ej;axiax?) exp[(i/f)S.,]. (3.2)

The difference between (3.2) and (2.14) is the order of
A3x and therefore it will not contribute here.
Then we have

(1“_._@._)] exp Axiaxig,
3t (2mihie) /2 2h

0
x (1 +E ij'AxJ) <zJJ(x", L) — Axi—w + O(A%c))
ax"

— ag"
x («/g"— Axi - i
X

Yx’ ) + e

(a2« )>
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% (the expansion of therest of the action) dax’. . .dax¥
= (1 + 04 W x" t') + (e/ifH W (x" t')
~ (ife/B)R"Y + iReE"Y + 0(e?), (3.3

where E” = Ej, g1,

Again, if A” + E" = R'"/6, then (3. 3) reduces to (2.4).

CONCLUSION

If the integral of (1.1) can be evaluated directly, then,
Feynman's formalism gives a unique K and a unique
equation. However, at the present moment unambiguous
calculational procedure which is really what would
define the integral does not exist. The “lattice method”
employed by others and also in this paper possesses
certain inherent ambiguities for example the Feynman
formalism leaves the scalar operator term of the equa-
tion ambiguous. Even if we fix the scalar term, the
normalization is not unique. Note that the same phenome-
non occurs even in a flat space, but all the different
normalizations add up to the same K after the lattice
calculation.

ACKNOWLEDGMENT

The author is grateful to Professor M.Dresden for
his warm guidance. Moreover, his deep human under-
standing has been much appreciated.

APPENDIX A

We will use the Lagrangian of (2.1), except that we
will consider only one dimension to simplify the matters.
The Lagrangian is, then,

Lix, x, t) = glx, D22 + alx, )x + vix, ). (A1)

We take an arbitrary path® x(f) such that x(#”) =x” and
x(t') = x’. To simplify the notation, we define

o dx vo bt d2x

= —— etc.
—dt * aiz 1y ’

From x’ = x"— x"¢ + $%"€? + +++, we see that

kllz%}g+a,/A:x+B,,Ax+o(A x) +O(€)+O(Ax),
(A2)

where o, 3" are the functions of x” and ¢” and they are
determined from the path chosen.

Differentiating (A2) with respect to time,

oo K Ax < v, da .>A2x 20"Axk"  o"A%
==+ ta"+— -
€ 2 %" € € €
” i g 3 "

+33A2xx,,+(3,,+_a_§7 )Ax g &% A3x

+ 6 9? + & A2 x+ higher orders, {A3)
where

da” _ dalx, £)

ax” 9x x¥ 7

and v, 8, £ come from 9(¢, Ax) term of (A2). Therefore
we finally get,

%"= 2a" (AZv/2) + higher orders. (A4)

s
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On the other hand, (A1) can be expanded as
ag” ag”
n + "(t II) + — (t —— t”)
[g d9x at”
ag" Y azgli
X5 (£ — "2 — "+ —=] + 0@t —1")3]
dx"2
x (.'xll + %ﬂ(t —_ t”) + O(t ‘-“t”)s)z
+{a”+3% 3t — 47 +35‘-;(t—t") + 0ot ~t" )
ax"” at
(X + x"(t n) + O(t “"t”)z) + 'l)” + O(t - t”)-
(A5)
Substituting (A2) and (A4),
” AZX 1y " Adx ag” Mx won A3
L = =g —5 +2 €2+(ax” €3+4 a—e-s-)
#” " A2y A3x nw DX
X{t—t")V+0 ((t—-t 2 (—EE, ?5))+a r
+au " A2x+ 'i)”’{‘ O((t 11)2 (égl’ _A__:_g))- (AG)
Therefore, §,= ftf"Ldt becomes
11A2x+2 ,b!"_A_?.}__ ag A3x+4 ” ,,ASx)
SH=8 g < z ax" € g o
+a’Ax + v + O(A?—c) + 0(e) + 0(22x)
a "
"&_%i&-{—aﬂA‘x-}v”E
€ ax" €
+ o( ) + 0(e) + 0(2x). (A7)

g% 0g"/ax",a"” are fixed by the Lagrangian and the end
points, and a”, 3” occur only in higher terms. Since ¥
expansion is

ay a2y

#og —— +L~_ Zx
Yix" 1) ax,,Ax zax”zA )

the coefficients of 3@ /2x” and 32y /3x"2are independent
of the path variation, because they pick up only the lowes
order terms. The arbitrariness comes only in the coef-
ficient of ¢ and this can be regulated by a normalization
of the form (2nehid)¥2(1 + ifef(x”, t')) which will

alter just the coefficient of Y. The arguments for the
averaging approximation of the action is similar. All
the ordering rules, i.e., Weyl-McCoy, symmetrization,
and Born-Jordan, etc,, differ only by a scalar operator
when the Hamiltonian has no more than second-order
derivatives. Therefore, we see that Feynman formalism
accomodates all these with the ambiguity of normaliza-
tion,

APPENDIX B
We consider

K =[@niRef2J 1 (1 +ihed +Ej;Axiax)) exp(i/f)S,)
when operated by O,

The result is

i (- XL +ihA’ + 23 K + 0(e)K +[ R2g"I2E;;
2¢ at’ J
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2_7; " p_99 98
+h (ﬁ) L2 i kAx o
142 _?_ n.¥2 2 T PR ERY
ek (ﬁ)g o &8 Sy
; 2
g (925

{12 35 3§
152, £ —
ax"iax”f Zri g (ﬁ)
. mfiy 38
—iha z(ﬁ) ax”i

ax™ ax"i
—3a"a] —v" + Ofe, Ax)]K

_ R am "+ g"i2g"i )

(B1)
From Hamilton-Jacobi equation,

1 73 aS aS s as "
A S g A=A, ij S g
at” 28 " 5" ax" ax"i 7

gul] a H & (Bz)

Using (B2) and (2. 5), (B1) becomes (K will not be written
down explicitly from now on):

’ 14
A;’ﬁ K2’ +H2E + 2ifig VE, Ax (ﬁf_’f..)
€

+3ih(g Vi V2 g + gid, )

’ Axk 1 ’ s .
x (g].k—?- + ic B].lkAxle +a;

ag'i
—¢ +38'4, Ax*Ax‘)

+ 4R (gl +g i, ,Axk+

+(§E’—’ %BkaAx +§LCU”A3€ Ax) + pihig'

+gV2g'i ) + 0 (—— and hlgher) (B3)

We use g"1/2, ,o"-V2g"ij = { g"lkg}, ,g"ii and evaluate
everything around time #'.

Then, (B3) becomes

—h24’ + K2E’ + 2zjh 1 AxiAxT

€ 4¢
+g ‘J

‘pAxE , .
+ 1ih (f’fi?———- + —I—B;lkAx‘Axk\) (28" m, 18"
+g',; Ax* + FAxng ™, g, 18

+Saxng mpgmp,ing i+ 3 Axng’ m‘ogmp,ig J,n)

’

ih Ax i £
+ 5 (g i, kg” %g{z‘?, szxkAxi"él

1 N 1 A3x
+ ﬂg’nBijkAxk + 5 € ‘»’C,m xkAx‘) + 0 ( . >

=h3(E" —A’)
+ R axtgl(bgimg) 18 + 5 ))
+g'h, et 28" (g n * &in, s +g}k,i)] @

* iL}eiAxi‘ﬁ'xj[2}2’1'1' + 38,8 4 18 8 m,

1 1kt 1 ¢ ’ ' ' mk
+ a8 T B E B mE ™
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S AP R I (€ 7 LT Y L )]
+ 38"k (g Y &l T 8k t)
— g’ mn[ij, m)' [kl n]

4g;kg ’;3
+ g e et & T 48 e
3

gY, = —gligimg,

» and therefore [ ]! is easily seen to
be zero.

By using

g2
131:

(g%}, )= 0, etc.,
[ ]2 becomes

1’ 3 ’ ’
&g’ mg,, &1 ;

1.7 7 + * s I ? ’
tig'tgimg 8l $8im, 8 " 0 ;

’ 1
2By —z8'Mgy iy t

+ig' %, i i‘g""gﬁn,mg'"“’g;é.j
+ 508l et 285 ) (B8 1080, W8 M — g g g, )
+ (=g 38"k + 28, 8" g g, 1)
—xg'ng' g, Gl T 2855

+ ég'lk(g;‘j,gk + g, ij) + %g'lkglii.}k

— 5 &g (28, i — & ) 28,
~ 248" (28, — &) 281,

—‘g;l,n)
ﬁg;j,n)'

I we group the above terms, we precisely get 2E
R// /6)

Therefore,

Opn nK = {—mA' +h2E" + 2E;AxiAx) ze—ﬁ

'

lﬁR A3x
- 66 AxiAaxi + O +0(e) + O(ax)]Kk (B4
For
Um [0, 0 K", £ 2, W, E)av s,
€0
we expand all the relevent quantities in terms of x”, ¢/, €,

and Ax. The procedure is the same as that of the short~
time calculation. The result is

lim [0, WKW(x', t')d¥y’
€0

—_ ("‘ﬁzA # + ﬁZElf 2En g”’fﬁz + R Ugiltj )d/(x’; t’).

Therefore, A" + E" = ;R".

APPENDIX C

We show that 1f 83 . is not constant, then, F of (1.4) de~-
pends also on x” x’. The argument is smular for A of
(1.3). We consider the one-dimensional case and g, =
v; = 0. Expanding the Lagrangian around the classu:al
path x(¢) [x(¢t") = x", x(t') = x’], we have

K= f exp[ f ((x,t)+ a(z’)

a2g(x, &)
ex9x

+ 32)dit|Dx,

yit)

+3 y(®)y(£) + higher order) (x2 + 2y

(c1)
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where y is a small variational path with y(¢') = y(¢”) = 0.
Therefore,

x” i i rtf3g(x, ) -
K=[, Dx exp(i Scl) exp[ﬁ /. <—T§_— y()x2+ -] .
Equation (C1) can be written as

) el .
K = exp (%Sd) £°Dy exp [% ft ) (Zg(x, Dxy + glx, )y?

G
+—‘g_rj;2+--->dt].
ax

If g only depends on ¢, 0Dy is only a fbmction of t"and
t'. However, if g depends on x, since fo Dy is a function-
al of g(x, t) evaluated at " and ¢/, it will depend on x” and
x'. Therefore, the normalization is allowed to have x”,
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x’ dependence when g, is position-dependent.

* Supported in part by the National Science Foundation Grant No.
GP-32998X.

'1.. Cohen, J. Math. Phys. 11, 3296 (1970); E. Kemer and W. C. Sutcliffe,
11, 391 (1970); 1. W. Mayes and J. S. Dowker, J. Math. Phys. 14, 434
(1973).

’B. S. DeWitt, Rev. Mod. Phys. 29, 377 (1957). W. Pauli, “Feldquantis-
ierung”, lecture notes (1950-1951).

K. S. Cheng, J. Math. Phys. 13, 1723 (1972).

*Preferably forward in time. This can be done by making K(x”, " : x",#) =0
for e < 0. See R. Feynman and A. R. Hibbs, Quantum Mechanics and
Path Integrals (McGraw-Hill, New York, 1965).

SFeynman and Hibbs, p. 35.

SWe consider only the arbitrary paths dealt by the authors in
Ref. 1. All these paths have the velocity at the end points in the
form of (A2).

See DeWitt or Appendix B.

8This does not necessarily mean that we should take K* fore < 0.



On the conditions that a vector field vanish outside a

given radius®

B. Bosco!

Istituto di Fisica Teorica, Universitd di Firenze, Istituto Nazionale di Fisica Nucleare, Sezione di Firenze, Firenze,

Italy

Kelvin Laboratory, Department of Natural Philosophy, Glasgow University, Glasgow, Scotland

M. T. Sacchi

Istituto di Fisica dell’Universitd, Cagliari, Italy
(Received 27 March 1973)

The constraints that the curl and divergence of a vector field must satisfy in order that the field be
identically zero outside a given radius are investigated. These result in two equations which connect
the multipoles of the components of the curl and the muitipoles of the divergence of the field for
each given /. In an alternative proof of this constraint it is shown that the same relations still hold
for the full space provided that the radial functions, which are the coefficients of the expansion of
the field in vector spherical harmonics, satisfy certain conditions at infinity.

1. INTRODUCTION

A physical way of introducing a vector field is by
prescribing its curl and divergence. The uniqueness of
this decomposition is well known. Furthermore, the
physical meaning of the irrotational and solenoidal
parts of the field need not be stressed here. In order
to quote a straightforward example, all the relevant
physical quantities in electromagnetic theory, like the
radiation emitted by a current, are connected to the
divergence and to the curl of the current itself.

The origin of this paper was an investigation with the
purpose of seeing what kind of general constraints are
imposed on the current responsible for a given type of
radiation.

In many problems these currents are restricted to a
finite region of the space. This condition which is quite
general imposes a constraint on the current itself since
the curl and the divergence of the current cannot be
assigned arbitrarily otherwise the current will only go
to zero as "2 for large . While this is quite obvious?
and well known, it seems to us that in the past it has
been overlooked,?2 and the detailed relations between
the curl and the divergence of a vector field that must
be satisfied for the field to vanish outside a given region,
to the best of our knowledge, have never been derived.3

We shall in the present paper derive a set of equations
which represent the necessary and sufficient conditions
for a vector field to vanish outside a given radius.

This will be done in Sec. 2 making use of the Helmholtz
representation,

In Sec. 3 an alternative derivation of the theorem is
given using the expansion of the vector field in vector
spherical harmonics.

In Sec. 4 some explicit examples are worked out.

2. HELMHOLTZ’S THEOREM AND THE VANISHING
OF THE VECTOR FIELD

Let j(r) be the vector field which vanishes outside a
given radius ;. The actual shape of the region in which

i(r) is different from zero may be completely arbitrary,

since we can always enclose it in a sphere of radius 7,
Our starting point is the well-known Helmholtz's theo-
rem* which allows us to write j(r) as a sum of an irro-
tational part V¢(r) and of a solenoidal partV x A:
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i(r) =Vo(r) +V x A(r) (2.1)
with the supplementary condition

V+A=0. (2. 2)
Obviously Egs. (2.1) and (2. 2) imply

Ve i(r) = a,0(r), (2.3)

VXj(r) =— A, A(r). (2.4)

The solutions of Egs. (2. 3) and (2. 4) are given by the
Poisson formulas

R A [

o(r) = y” J lr—&ldg’ (2. 5)
_1 L vxi) o

Alr) = - f~—-———|r_§| dsg (2.6)

It is easy to verify that condition (2. 2) is automatically
satisfied by expression (2. 6). We are now mainly con-
cerned in imposing the condition that outside the radius
7, the vector field j(r) resulting from the insertion of
expressions (2.5) and (2. 6) into (2.1) should be zero.

The simplest way to proceed is first to use the classi-
cal Legendre expansion:

1,0 R osh 1B
|r_ El = 47 lg():) m§l (Zl T 1) 1'1+1 Ylm(&y(p )Ylm(‘s’ sz) 7)

valid for » > £, where ¢/, ¢’ and 4, ¢ are the angles of
the vectors £ and r, respectively.

By inserting Eq. (2. 7) into expressions (2. 5) and (2. 6)
we get

o !
olr) =— E(;) m§l 211+ 1 r}q DImYi(3,9), (2.8)
A(r) = i >£‘ 1 1 Ri®Y, (s, 9), (2.9)

=0 m=-1 21 +1 r¥1

where we have introduced the notations
Dim= [ E1Y} (8, ¢ )V + j(£) 3¢, (2.10)
Rim= [ E1Y},(8, @)V Xj(r) d3¢. (2. 11)
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Of course, Egs. (2. 8) and (2. 9) are valid only for » > 7,
but that will be enough for our purposes.

In order to proceed further we will need the following
formula:5

Y, (8, 1+ 1\1/2/q4 I 1
yil 21+1 dr r)ril

1, l+1' m(195 (P)

l 172/ 4 I+1\ 1
+ —F ) —
(21 + 1) (dr r > ritl Vim0
= (@14 DI+ D2 =L Y, 0 3, 0)
(2.12)
This formula is a particular case of Olsons' formulas
and the Y; , ,,where A =17—1,[,1+ 1,are the vector

spherical harmonics as def1ned in A83. 5 With the help
of Eq. (2. 12) we can write at once

00 l
1+ 1)\12 1
v = — - pim
v(r) 1§) m§l (Zl + 1> yi2

Since R!™ are constant vectors, we get also

§\<l+1>1/2 1
[

m-1 \2] + 1 ri2

Yl' l*l,m (7}: (ﬂ)-
(2.13)

Yl l+1m(‘, 90) X Rim,
(2, 14)
In order to make explicit the cross product, we must

write down the definition of the vector spherical har-
monics which appears in (2. 14):

vxAm = 5

Y, a8 0)= 2 Y1, (3, @)e (I + 1 plq {1+ 1 1Im).
e (2. 15)
Here the e, are the unit spherical vectors and (I + 1
plg!ll + 1 1lm) are the Clebsch—Gordan coefficients
both being defined as in A. Equations (2. 13) and (2. 14)
are valid for r > 7, and therefore they must add up to
zero if the vector field j(r) has to be zero in that region.

We shall define the spherical components of the vector
tors Rim as:

RIP = (1@ Ym — iRy,
(2.16)
RY™ = Rim R,y =— (1/V2)®im + Ri™)

In terms of these quantities the three spherical compo-
nents of V X A can be written down as

Yl+1 g

(VXA)l——Z‘Z)Z)<l+1)1/2 1

20 +1 yir2
x{(l+1p10]1+11im)R7
+(1+1p11 |1+ 1 UmRE™, (2.17)

- 20+1) ez PLE

xi{(l+1pl1—1|1+11mRY
—(@+1pll] i+ 11m)RT

(V X A), ZI\E <l+1>1/z_1_

(2.18)

/2 1
72

(V X A), 222{“1)

21+ 1 Vi
Xxi{(l+1p1—1]1+11mRi"

+(I+1pu10]1+11im)RIm}. (2.19)
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Similarly one can obtain the three spherical compo-
nents of the vector V¢ [Eq. (2. 13):

+ 1/2 pim
E(l 1> D

imp\21 + 1 y 2

X{+1pl1|l1+1 1im)Yyq , (3, 9),

(Vo)

(2. 20)

+ 1/2 im
oo=— | <z 1> D

21+ 1 ri2
X (L+ 110|141 1m) Y, ,(8,9), (2.21)

1/2 pim

_ 1+1
(Vo) = lﬂZ:>u <2z + 1>

X (I +1pl—1[1+11Um)Y,q ,(,0)

yiv2
(2. 22)

The change in sign in (2. 20) and (2. 22) is due to the
property of the unit spherical vectors:

e; e, =(—1)9e *e,. =0, (2. 23)
With the explicit expressions-for (V X A)_given by Egs.
(2. 17)-(2. 19) and (V) given by (2. 20)- (2. 22) we can
write the three equat1ons compelling the field j(r) to be
zero for r > r:

(Vo) =—(V X A(r), withg=—1,0,1. (2 24)

From the resulting equations, by performing the sum

over u,and using the orthogonality of the spherical har-

monics, one gets

Diml(I+1mll |1+ 11lm+1)
=—i{~(+1ml1|1+11Um+1)Ri™

— I+ 1m0 |1+ 1lm) BT (2. 25)
—Dim(l+1ml10| 1+ 1 1im)
=i{l-(@+1m1—-1]1+11Um—1R}Y"?
+(@+1mll|1+11Um+ 1)RI™Y, (2. 26)
Diml(l+1ml—1|1+11lm—1)
=—i{(l+1ml—1|1+11m~—1)Ri™?
+(I+1m10| 1+ 1 Lim)Rim}, (2.27)

One notices that all the Clebsch—Gordan coefficients
entering into these three equations have simple expres-
sions. Upon substitutions of the explicit expressions
and simplification one gets the final equations:

R = [(1—m)/2(1 + m + 1)]1/2R{™ + iDIm1),

(2. 28)
RI™ =[(1 + m)/2(1— m + DV/2(R{™ — ipim1),
(2. 29)
iDim=[(I + m)/2(I—m + 1)]*/2 R
—[(I—m)/2(l + m + 1)]1/2RI™1 (2. 30)

Equations (2. 28)—-(2. 30) are the main result of this
work. One sees at once that only two of them are inde-
pendent. For reasons which will become clear in the
next section we shall take as independent equations the
first two, i.e., Eqgs. (2. 28) and (2. 29). Let us now observe
that Egs. (2. 28) and (2. 29) are both necessary and suffi-
cient conditions for the vector field j(r) to vanish outside
the given radius.
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That these relations are necessary conditions follows
from the way they have been derived,i.e.,by demanding
that the field be identically zero outside the given region.
But they are also sufficient, for, once they are satisfied,
all the coefficients of the Laurent series in » vanish
identically.

A last remark is in order here.

The constraints imposed on the field by the fact that
it is vanishing outside a given region are formally inde-
pendent of the radius of the sphere enclosing the domain
in which the field is different from zero. This is obvious
physically since these constraints are relations among
integrals which are different from zero only in the do-
main in which the field is different from zero.

This argument can also be seen from the derivation
of our relations (2. 28) and (2. 29). The whole point was,
as far as the radius was concerned, to choose a radius
7 such that the entire domain in which the field is non-
vanishing is enclosed in the sphere of radius 7, and
then for » > 7 to impose the condition that the field be
identically zero.

It is quite clear that whatever radius R >y we had
chosen, our proof would have proceeded in the same
way and would have ended with the same results.

This consideration suggests that Eqs. (2. 28) and
(2. 29) are probably still valid for an infinite radius pro-
vided that certain conditions are satisfied. This turns
out to be the case as the alternative proof that we give
in next section will make clear.

3. ALTERNATIVE PROOF

Although the guess made at the end of Sec. 2 about the
validity of Eqgs. (2. 28) and (2. 29) for infinite radius
could be put on more sglid ground directly even with the
Helmoltz's representation, we shall outline in this sec-
tion an alternative proof of the same relations. Let us
assume that the vector field j(r) is sufficiently well-
behaved that it can be expanded in vector spherical
harmonics:

](I‘ E {fJM(T)YJ J+1 M(‘s1 (P) +gJM(r) YJ J+1u(" (P)
+ hJM(T) J, I~ 1M(‘9 (P)} (3.1)

The curl and the divergence of j(r) can then be expressed
in the following compact forms (A84):

V X j(r) = EM LT + 2] fy (N [T /(2T + D2 X, (3, 0)
+ L[—J] gf,’zl[J/(ZJ + 1)]1/2 Y, u(3,9)
+ LT +1)g@ [0 + 1)/ @T+ 1]i/2

x YJ.J—IM("’ @)+ L[—" (J — 1)]hJM(r)

X[ +1)/@J+ 1)]172Y (3, )}, (3.2)

Veilr) = 2 A[7/@ + D2 L (T = D]l @)
— [ + 1)/ + 1)[2/2 L[ + 2] £ 1,0} Y, 0,3, @).
In Egs. (3. 2) and (3. 3), the operator -9
Llx]= d% +Z (3.4)

has been introduced.

From Egs. (3. 2) and (3. 3) the multipole components
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Rim = [riY} (3,0)(V X j(r)),d%, (3.5)

Dim = [l Y} (3,9)Vj(r)d3r (3. 6)

can be obtained.
The result is
Ri™ =i {[(1 + m)(I + m — 1)(I — 1)(21 + 1)/21(21 — 1)]*/2
XGIE moat [(1+ m)(I—m + 1)1+ 1)/20 /2 HI L,
3.7
Ry = i{[— D@1+ D+ m)I— m)/U2 - V]2 G,
— m[(21 + 1)/1]1/2 HULY, (3. 8)

= i{[(20 + DI ~ 1) —m ~ 1)1 —m)/212] — 1)]1/2
+1
-1,

c —[Q@L+ DI+ m + 1)l —m)/202 H, .9,
(3.9)
Dim=— (121 + 1)]'/2 HV'L. (3.10)

In Eqgs. (3. '7)—(3. 10) the following definitions have been
introduced:

»1_ 7o
Hl,m - fo

w1 _ [To
Gl-l.m - fo

and use has been made of the fact that since the field is
vanishing outside the domain contained in a sphere of
radius 7 the following quantities must also vanish for
allland m and » = 73

Si,m )72,

ril hl,m(r) dr (3.11)

ril g,y r)dr, (3.12)

EimMry2,  hy (r)ri2, (3.13)
Equations (3. 7)—(3. 10) express the four quantities
R;"‘ and D!™ in parametnc form, by means of the para-

meters Gj:} , and H!' 1 for a given I and m.

A simple algebric mampulatlon allows the elimination
of these parameters and one ends up again with Egs.
(2.28) and (2.29). Although it would have been difficult
to foresee our basic equations from this direct calcula-
tion, this proof has the advantage that it established in
clear way the conditions under which the stated theorem
holds.

They are:

-1, m

(a) The field j(») can be expanded in the series (8. 1) of
vector spherical harmonics.

(b) The radial coefficients are such that the quantities
(3.13) are zero for » = 7.

The condition (b) allows an immediate extension of the
conditions under which our theorem is valid. In fact it
is obvious that if the radial coefficients are such that

lim »%2f, (r)=0 2

¥ o

lim r#2g, (r)=0 (3. 14)

y 00
lim

r

g for all [ and m,

r#2h, r)=0

nothing is changed in our formulas, and we are still left
with Eqs. (2. 28) and (2. 29). Therefore, provided the con-
ditions (3. 14) are satisfied, our theorem is valid if the
region is the whole space.

Before closing this section it is worthwhile to analyze
the physmal meaning of the two parameters G and
Hy “
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Equation (3. 10) already dictates the significance of
Hﬁ‘l Apart from a known function of /, this parameter
is the multipole (I, m) of the d1vergence of the field.

In order to find the meaning of G*2

i.m»let us compute
the following quantity:

Stm = f r Y (3, )V e(xr X j)d3r (3. 15)

This integral, when j is a current, is the static magnetic
multipole (I, m) of the current,

Its evaluation in terms of the radial coefficients can
be accomplished if one observes that by a vector iden-
tity S m can be written as

Stm=— [ri¥} (8, 0)r -V Xjddr. (3. 16)
The following formula is valid (A84):

/1Y, ¢, 9) == [+ 1)/ + 1)]1/2Y, .,y ,.(3,¢)
+[/@I+ Y)2Y, . 6,0, (3.17)
It is easily seen that by use of Egs. (3. 2) and (3. 17),

and due to the orthogonality of the vector spherical har-
monics gne has

Sim — § f,ry:;[(i_’_f) gz,,,.(”) [l(l + 1)]1/2

dr 21+ 1
d Lt 1 [+ 1)Jr/2
—<ﬂ ——,.—)gsz) W1 Jd"’ 8.18)
or
Stm=—i[l(1+ V]1/2 [ yi2g, (r)ar
— il + 1)z G2, (3. 19)

Equations (3. 10) and (3. 18) therefore coniplete our pic-
ture by telling us the physical meaning of the parameters
H'» and GI'2,. They are, respectively, apart from some
glven funct1on of [, the statxc electric and magnetic mul-
tipole (I,m) of our vector field j(r).

4. SOME EXPLICIT EXAMPLES

In this section we shall verify on some elementary
examples the validity of our relations among the multi-
poles of the curl and of the divergence. We shall consi-
der two examples, one solenoidal and one irrotational.

First we consider the closed loop field

](l‘) = 1 6 - 7’/2) 6(7 - a) nqp) (4' 1)

where 7, is the unit vector in the ¢ direction and 7 is a
constant. Physically this may represent a current of
intensity 7 flowing in a circle of radius a centered at the
Z axis.$

Cbviously one has
Vej=0
so that all D¢= = 0.

4. 2)

Furthermore, an explicit calculation shows that the
only nonzero multipoles of the components of the curl
are

RET =1[(21 + V(I + 1)7/20]V2a71 PL, (0), (4.3)

R{Y=1[(21 + 1)UL+ 1)n/2]4/2 a2 (1 — 1) P ,(0), (4.4)
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RYO =— Ia®l[n(2l + 1)]1/2 [P, (0). (4. 5)

By remembering the following relations,
PY0) = (1 — 1) P4(0),
I PY(0) =— PL,(0),

it is easily seen that Egs. (2. 28) and (2. 29) are satisfied.
As a second example let us consider the field”

I(r)

ity=m1, 5 [0(cos® — 1) — 6 (cose +1)],  (4.6)

where 7, is the unit vector in the » direction, the 6 func-
tions force the field to be zero everywhere but along the
polar axis,and I{r) is zero for r = 7,

For a particular choice of the function /(r), (4. 6) may
describe an antenna. However, for our purpose we shall
not need any further specification of I(r).

The only multipoles of V¢ j different from zero are
the ones with m = 0, which are

Do = <2l4‘:1‘ 1)1/2 [P(1) — P~ 1)] fo'o

while the only R{™ different from zero are

dl(r)
Ear 4.)

T
x fo"o Iryr¥1dr, (4.8)

X fo"o I rtidr. (4.9)

Now due to the fact that I(»,) = 0 we have identically
r 1 dI(r) — o
fo S 7 “ar dar =—1 f o

ri-t I{(r)dr

so that one sees again that (2. 28), (2. 29) are satisfied.

5. CONCLUSIONS

A full and detailed investigation has been made of the
relationship which the curl and the divergence of a vec-
tor field must satisfy in order the field vanish outside a
given region. In particular the alternative proof we
have given in Sec. 3 shows that this region may be the
full space and provides the conditions which the radial
functions, which are the coefficients of the field's expan-
sion in spherical harmonics, must then satisfy. The al-
ternative proof also provides a quite natural parametric
representation of the four quantltles Rlm and D!™ in
terms of two parameters G!.Z and Hl+1 which are directly
related through Egs. (3. 14) and (3. 22) to SIm and pim,

These two parameters are the ones which by virtue of
our Egs. (2. 28)~(2. 30) determine the multipoles of the
components of the curl of the field. Furthermore, they
can be identified respectively with the magnetic and
electric multipoles (I, m) of the field j(r). While this
observation may be taken as the starting point for a
general formulation of a theory of the field's multipoles,
we believe that the theorem derived in this paper may
be useful in other respects.

For example the electric and magnetic multipoles of
soft radiation generated by a given current are deter-
mined by the quantities D!™ and S‘™ respectively. If,
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therefore, the angular distribution and the polarization
of such radiation is measured, one can obtain D!™ and
Sim and by the theorem derived in this paper one can
determine the multipole components of the curl of the
current itself. The theorem, therefore, will provide a
test for any proposed model for such a current.8

Conversely, the theorem may prove useful in con-
structing models of currents which radiate in pres-
cribed way, for example with a fixed ratio of magnetic
to electric multipoles.
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"See for example J. D. Jackson, Classical Electrodynamics (Wiley, New
York, 1962), p. 563.

8B. Bosco, Phys. Lett. B 40,171 (1972). This paper contains some mis-
prints which are corrected in the present paper.
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We briefly review the methods which have been used to establish the domains of analyticity of the
partial wave scattering amplitude in the presence of a Yukawa potential as a function of the coupling
strength, and the methods available for proving the convergence of Padé approximants to the

_ Neumann series of the partial wave Lippmann—Schwinger equation. We then give a complete proof,
using the Banach space technique first used by Lovelace, that the scattering amplitude is
meromorphic in the coupling strength, and use Pommerenke’s or Beardon’s theorem to deduce the

domains of convergence of the Padé approximants.

1. INTRODUCTION

In this paper, we briefly review the progress which has
been made in proving the convergence of Padé approxi-
mants to the Neumann series of the partial wave Lippman-
Schwinger! equations in the presence of Yukawa type po-
tentials. We present a self-contained and explicit deriva-
tion of what appears to be the strongest result pertaining
to the physical situation. We prove using Beardon's
theorem that the [M, N] approximants to the Neumann
series converge uniformly as M — « with M < a N for
some a > 0 to the solution of the Lippmann-Schwinger
equation in any compact set containing no poles of the
solution or limit points of the poles of the approximants,
We prove, using Pommerenke's theorem, that the [M, N]
approximants to the Neumann series converge in capacity
with A-! < N/M < x for some x = 1. The method was
first used by Caser, Piquet, and Vermeulen for the
T matrix2; it was simplified and applied to the K matrix
by one of us3 and is being used to solve the Faddeev
equations of K decays.

The theorem we prove can certainly be derived by
taking appropriate sections from the published litera-
ture, but some of the literature is incorrect and has
been superseded. There are several different approach-
es to the problem, and we wish to use methods which
will generalize. Generalization to nonsingular short-
range potentials is straightforward in all methods, but
not all methods generalize to treat the Blankenbecler-
Sugar equation,® the Bethe-Salpeter equation or equa-
tions with nonlocal or energy-dependent potentials.

(i) Banach space methods seem the most natural way of
approaching the problem. Lovelace used a spectral
representation of the kernel to prove the kernel compact
on the Banach space C, of bounded differentiable func-
tions with bounded continuous derivatives on [0, ©).5 It
is now known that not all compact operators on an
arbitrary Banach space can be approximated in norm by
operators of finite rank. With this possibility in mind
Lovelace used a framework in which it is implicit that
such an approximation exists. To be precise, he con-
siders

K, (s) = (=1/m) fowds'[fll(S')/(S' — )],
where
(p |‘Al[q) = 272V, (p, sV/2)s1/25(q — s1/?)

and s does not lie on the positive real axis. Al(s) is a
rank 1 operator for any value of s. It is then true that
the integral converges and can be uniformly approxi-
mated by a Riemann sum, which is a finite rank opera-
tor. Muskhelishvili'sé theorem shows that when the
derivative with respect to s’ of the integrand without
the factor (s’ — s)-! is uniformly bounded in the neigh-
borhood of any given point on the positive real axis,
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then the limit in norm of K (s) as s tends to the real

axis from above can be taken. Then the integral becomes
the kernel of the Lippmann-Schwinger T-matrix equa-
tion.

Since we are using the uniform topology, the kernel of
the Lippmann-Schwinger equation can also be approxi-
mated by a kernel of finite rank when the je limit is
taken.

(ii) Hilbert space methods using the space of square
integrable functions can be used to prove that the kernel
of the scattering equations when suitably rewritten, is
compact. Scadron, Weinberg, and Wright? consider local
potentials, V(r) and take a (possibly complex) square
root VVz{y). They define ¥(r) = VV/2(r) |¥(r)) where
[¥(r)) is a scattering state for which [¥(r) {2 is the
measurable and finite probability density, and so, for
finite range potentials, f [¥(r) [2dr < . Thus they need
only consider operators defined on the Hilbert space of
L2 functions.

To calculate the T matrix, use
T = VV2(1 — z\VV2GVV/2)-1y1/2,

Provided V/2GVV2 exists and is an L2 kernel, then the
resolvent exists and is meromophic in A, and its momen-
tum space representation gives the full 7 matrix. The
methods given by the authors are rigorous in the co-
ordinate space representation, for potentials of short
range. The kernel is not self-adjoint unless V(r) is of
one sign. The results carry over to the momentum
space representation by using the unitary Fourier-
Plancherel® transformation, which leaves the spectrum
unchanged.

(iii) Symmetrization and subtraction methods can also be
used to prove meromorphy of the solution by reducing
the Lippmann-Schwinger equation and its variants to non-
singular equations to which Fredholm theory applies.
Taylor's subtraction method® has the advantage that

it generalizes easily to the Bethe-Salpeter equation

and all three methods®-!! lead to integral equations with
continuous kernels. These can be solved by matrix
inversion methods, provided the p -space representation
of the potentials have enough partial derivatives. The
solutions of the nonsingular equations given by the sub-
traction methods®.1! are easily related to the solution of
the Lippmann-Schwinger equation by quadrature formulas
which manifestly preserve the meromorphic character

of the solution as a function of g.

There is a very general theorem due to Poincaré!?
which establishes the analyticity in g of the Jost func-
tions of the Schrodinger equation, which leads directly
to meromorphy of the S matrix; this method may also
apply to other scattering equations like the Bethe-Salpeter
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equation in the elastic region, but it does not generalize
to the Blankenbecler-Sugar equation.

There are two special cases which allow strong
results to be deduced. When the potential is positive,
i.e., repulsive, Masson!? has used the Schrodinger equa-
tion to show that for positive energies the K matrix is
an extended series of Stieltjes in the g plane. The
analysis of Scadron ,Weinberg and Wright? also leads to
real equations with real solutions whenever V{(r) has one
sign. If one works at negative energies, the Lippmann-
Schwinger equation can be symmetrized, and the
Hilbert space theorems for L2 kernels apply. Thus 7T is
meromorphic in g and the poles lie on the real g axis.
An eigenfunction expansion shows that 7' can be related
to an extended series of Stieltjes for any potential, by
treating the first term of the series separately. A
somewhat roundabout numerical method of solving the
Lippmann-Schwinger equation is to solve it for negative
energies and then extrapolate back to the physical
regionl4; this is claimed to work accurately over moder-
ate energy ranges.

(iv) There are two approaches to the method of establi-
shing convergence of the Padé approximants. If the
series is a series of Stieltjes!s or an extended series of
Stieltjes,!3 then there is no difficulty, because the poles
of the [N, N — 1] approximants are restricted to a par-
ticular region of the g plane and all their residues are
positive. If the kernel is a kernel of finite rank,
Chisholm?¢ has proved convergence. It is likely that
similar results apply to compact (completely continuous)
kernels, but there are some difficulties about uniformity
of convergence in the proof, and we are grateful to
Professor Chisholm for a discussion of the point. The
most powerful method in the general case appears to be
that of using Pommerenke's or Beardon's theorem? on
the convergence of Padé approximants to meromorphic
functions. Pommerenke's theorem grew from the
theorem of Nuttall about convergence in measure.!8
Once it is established that the kernel of an integral equa-
tion is a compact operator, then the resolvent is mero-~
morphic in the g plane.1®

Only when convergence of the [N, N — 1] approximants
to the Neumann series is proved can one establish the
convergence Of Lanczos' minimal iteration method to
the solution.2¢

We present an analysis of the Lippmann-Schwinger
equation which is similar to Lovelace's, but borrows
a technique of the subtraction method. Our method is
explicit, to the extent that we construct a finite rank
approximant to the kernel of the Lippmann-Schwinger
equation, and it shares with Lovelace's the advantage of
being easily generalized to other scattering equations,
Our method is conceptually simpler than Lovelace's
because we do not use operator valued integrals, and we
prove explicitly that the Yukawa potential satisfies the
conditions of our hypotheses. We apply our methods to
the K-matrix equation, because it is easier to do numeri-
cal calculations with real numbers; the methods apply
equally well to the f-matrix equation, and this is briefly
discussed in Sec. 3.

2. CONSTRAINTS ON THE POTENTIALS

We consider first the Lippmann-Schwinger equation for
the partial wave K matrix written in momentum space:

Ko, k) =gVip, k)
—@g/m [ Vip, @lg*da/ (k> — ¢?)]K(g, &').

Suppose that &’ is fixed at an arbitrary positive value.
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Set V(p, k') = ¢(p) and seek a solution f(p) = K(p, k).
Then in this notation, we must solve

£(0) = g(p) + @g/m) [ Vip, a)4?da/(q? — kD)]f (q).

In Sec. 3, we shall prove the convergence of certain Padé
approximants of the Neumann series of this equation to
the solution of the space C, in a region D of the coupling
constant plane.

Our method works for potentials satisfying

i) v(p,q)l < ®(g) and

%%(P, Q))S <I>(q),

for allp, g = 0, where fowtb(q)dq < w,

(ii) V has continuous second partial derivatives for
p =20, g=0and,for any A > 0,

3V(p, q) R a2v(p, q)
aq ’ dpoq

as p — o uniformly for 0 < ¢ < A. We now show that the
Yukawa potential satisfies these conditions. For

D,q = 0 write s = 2pq/(p2 + ¢2 + u2) so that 0 < s < 1.
The momentum space representation of the unit Yukawa
potential in the /th partial wave is

V(p, @) = 2pg)-1Q,(1/s),

Since @, (1/s) has a zero of order [ + 1 at s = 0,2! we can
write

V(p,q) = (p? + q* + p2)1 F(s),
where F(s) = s~1Q,(1/s) is analytic for |s] < 1.
Further22, we can express F in the form

F(s) = A(s) + B(s) log [(1 + 5)/(1 — s)],

for 7 < s < 1, where A and B are bounded functions with
bounded derivatives in this range.

-0

1=0,1,2,....

In showing that V satisfies conditions (i), we make
separate estimates for the regions 0 < s < 3and s > 3.
Note that for any number » for which 0 < < 1, the
contour s = 7 is a branch of a hyperbola with asymptotes
rp2 — 2pgq + rq% = 0, as shown in Fig.1. In particular,

FIG.1. A branch of vp2 —2pg + g2 + rpu2 = 0
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the regmn s > § lies between the lines ¢ = (2 & \/3)p 50
that $p < ¢ < 4p in this region. For all p, g = 0,

av_ 1 oF _ 2 P
3 pz + g% + p2 o (B2 +q2+pd2
BF ; 38

P =F 3 ap’

as _ 2g  4p%yq

P prtgrpz (pR 4+ g+ opdr

Note that [3s/3p| < 6/Vg? + pzfor allp, g >

The vegion 0 < s < 3: In this region F and F’ are
bounded, therefore V(p, q) = O((g? + p)™) and 3V(p, g)/

ap = 0((q? + u?-99 uniformly in p.

The region 4 < s < 1: In this region

1+s_(@+o2+p 25¢°+p

T—s " (p—g)2+p2 p ’
Hence F(s) = O(1 + log*y) and

Vi, @) = O((1 +1og*q)/{g* + p2) uniformly in p.
Also, since
|2 10g (Lts)| = | —20td _20-d | 2
13p 1—s B +q2+p2 (p...q)zq.“z-,\u’
aF _ 98 )08 1+s
5 =AW+ Bz log(-—~——1 s)

1+s
+ Bls) 5 log (329 = o),

and aV/3p = O((1 + log *q)/(¢? + u?) uniformly in p,

Hence V satisfies (i). To verify (ii), observe that the
region 0 s ¢ < A, s remains bounded and so do F, F', and
F’, Simple calculations show

= of3%)
g <A

v _ KL
o) ™ g
uniformly in 0 <
3. OPERATORS ON THE BANACH SPACE
Let C, be the space of all complex valued bounded, diff-
erentiable functions f on [0, ) with bounded continuous
derivative. Then C, is a Banach space under the norm

Ifll = sup |£@)] + sup|f'(®)].

We shall show that the formula
(TN = [ Ve, 9)a2/(a% — kD)]f (@) dg

defines a bounded linear operator T of C, into itsel
which can be approximated arbitrarily closely in norm
by an operator of finite rank.

For any A > 2k, decompose Tf as

(77) ()
Vip,q) = Vip, B) g2
=j;)A (pq‘;_k(p qikj\q)dq
+vi, 0 [° A sz(q)dq+ I V9 k,f(q)dq

= (T 1)) + (T,)p) + (T, 1)),
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The existence for each f in C, of the principal value
integral defining T, f follows from the fact that f is
differentiable at 2. Further, since

[ e« | (ALY
il ][, = —
< Ilf!(f q.fi + foquqj_dzz \>

and V(g, ») is a C, function of ¢, 7, is a bounded operator
of ranklonC,.

Next, given € > 0, choose A > 2k so that f #(g)dy < e.
Then
(@, NE) | < [7170,0)121f @)ldg < 217 e
and
(e < [T

80

aV(P, q) [

If (@) dg < 211 lle,

1T, 71 < 4llfle,
and T, is a bounded linear operator on C, with ||T,|| < 4e.

To complete the proof of the assertion about T, it is
thus sufficient to prove that T, is a bounded operator on
C, and that it can be approximated in norm by operators
of finite rank,

Observe that the kernel

Vip,q) — Vi, k) g2
U(P,q)= qq__k(p qq_,,_k (tI’*k)
aVip, k) p

which defines T, has continuous first partial derivatives

inp >0, 0<g< A. For each such p and ¢, we can find
¢’ and g¢” in [0, A] such that
v, (1’) q°
U(p’ q) = T g+ %
VP, q9) 22V, q") ¢°
aqg _  opoq q Tk’

so, by condition (ii), U(p, q) — 0 and 3U(p, q)/ap — 0 as
p — « uniformly for 0 < ¢ < A. In particular, U and
aU/dp are bounded in 0 < ¢ < A and it follows easily
that T, is a bounded operator on C,.

We next show that, given ¢ > 0, one can choose functions
v, *** ryin C, and polynomials ¢, ... g, such that if

N
A, q) = 2 vl g )
t=1
then
lU(P,q) “'A(P,QH < € )
aU(p,q) 034, q) k forallp > 0and 0 < ¢ < A.
€ (1

First choose X > 1 so that | U(p, ¢)| < /9
and JaU(p,q)/op1< e€/9forp=Xand 0 < ¢ < A.

By the Weierstrass theorem, we can find polynomials
Py Pyi g, gysuchthat if

N
B(p, q) = 2} Pi(P)qi(q),
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then
3U(p,q)
( % B(p,q) 1 <
for0sps<sX+1and0 < sA.PutPi(p)_—.nypi(t)dt N/M <
and

23 Pi(pYqq)

so that 3C/ép = B. Also,

Clp,q) =

Ult, q)
op

—C(P,Q)l <2¢/9for0<p <X +1and

U(p,q) — C(p,q) = f ( —B(t,q)> at + UX, q)

so |U(p, q)
0 <gqsA.

Now choose any element s of C, such that s(p) =

1for0<ps<X, s(p)=0forp=X+1and 0 < s(p)
and |s'(p)l < 2for all p = 0. Define », =sP, so tht
A = sC.

For0.< p <X, A=C and 0A/ép = B so that the
inequalities (1) are satisfied for 0 < ¢ < A.

For X <p< X +1and 0 s g < A, we have both
|Ul < €/9 and {U-Cl| < 2(5/9 so |C| < €/3. Similarly,
| B < 2(¢/9). Hence |U-Al < |U| + |A] < Ul + |C| <
4(c/9). Also,8A/3p = sB + s'C, s0

\ |<1B|+2lcl<

an
oU _ 04 U
Forp=X+1, A=0A/3p =0 so again (1) holds for
O0<g<Aby ch01ce of X.
Now consider the operator Q on C, defined by
Q)@ f APAU@ﬁM—g O‘qwfwmﬁ )

Clearly, @ is a bounded operator of finite rank on C,.
Also, || T,-Qll < 2eA which completes the proof.

We now turn to solving the equation

f=g¢ +Q@/mglf.
Given any € > 0, we may express T = @ + N, where @
is an operator of finite rank and [N} < €.

The equation can be written

[1—@/mgNlf =g¢ + (2/m)gQf.

Now for |g| < w/2¢, [1 —(2/7)gN]! exists as a bounded
operator on C, so we solve
fF=[1—@2/n)gN]'ge +(2/n) gl —(2/m)gN]'Qf.

This can be done by solving a finite system of linear
equations and yields f as a meromorphic function of

gin lg| < /(2¢). Since ¢ is arbitrary, f is meromorphic
in the whole g plane. Also, since (1 — 2gT/7)-! exists for
gl <@/2lTl,f is analytic at g = 0. Thus Pommerenke's
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theorem and an inspection of the proof of Beardon's
theorem imply, respectively:

(1) Let x = 1. I [M,N]f is any sequence of Padé

approximants to the Neumann series for f with a1 <

x and D is any compact set, then }M,N]f con-
verges to f in capacity on D as M — «. (By convention,
M is the degree of the denominator and N is the degree
of the numerator of the approximants.) More explicitly,
for each € > 0, the capacity of the set {geD:|[M,N]f(g) —
(@} = €} tends to zero as M — . The definition of
capacity is given by Pommerenke and Hille.1”

(2) If [M,N]f is any sequence of Padé approximants
to the Neumann series for f with N = M for some
o > 0 and D is any compact set which contains no poles
of f or limit points of the poles of the approximants,
then [M, N]f converges to f uniformly on D as M — =,

We also observe that this method applies to the equa-
tion for the T matrix

y*dq
k2 — g2 + i€
V(p, k') + ikV(p, k')t (k, k")

2 o0
__P fo V(p’ q) &

t(p; k,)

VUMV)—%—LWVU%W g, k')

Il

- tlg, k).

We should redefine 7 so as to include the extra rank 1
operator, and the proof is otherwise unchanged.

'B. Lippmann and J. Schwinger, Phys. Rev. 79, 469 (1950).

28. Caser, C. Piquet, and J. L. Vermeulen, Nucl. Phys. 14, 119 (1969).

3P. R. Graves-Morris, Nuovo Cimento A 4,91 (1971).

“R. Blankenbecler and R. Sugar, Phys. Rev. 142, 1051 (1966).

5C. Lovelace, Phys. Rev. 135, B1225 (1964).

N. I. Muskhelishvili, Singular Integral Equations (Noordhoff,

Groningen, 1953), p. 38.

"M. Scadron, S. Weinberg, and J. Wright, Phys. Rev. 135, B202 (1964).

8F. Riesz and B. Sz.-Nagy, Functional Analysis (Ungar, New York,
1955).

°J. G. Taylor, Nuovo Cimento Suppl. 1, 1002 (1963); P. R. Graves-

Morris, Phys. Rev. Lett. 16, 201 (1966); Erratum p. 494; M. M. Broido

and J. G. Taylor, J. Math. Phys. 10, 184 (1969).

'H. P. Noyes, Phys. Rev. Lett. 15, 538 (1965).

K. L. Kowalski, Phys. Rev. Lett. 15 798 (1965).

T, W. Osborne, Phys. Rev. D 3, 395 (1971); P. R. Graves-Morris,
Nuovo Cimento A 4, 535(1971).

2H. Poincaré, Acta Math. 4, 201 (1884).

3D, Masson, J. Math. Phys. 8, 2308 (1967).

“R. W. Haymaker and L. Schlessinger, in The Padé Approximant in
Theoretical Physics,edited by G. A. Baker and J. L. Gammel
(Academic, New York, 1970), p. 257 and references therein.

'5G. A. Baker, Advances in Theoretical Physics, edited by K. A.
Bruckner (Academic, New York, 1965), Vol. 1, p. 1.

16J. 8. R. Chisholm, J. Math. Phys. 4, 1506 (1963).

A, F. Beardon, J. Math. Anal. Appl. 21, 344 (1968); Ch. Pommerenke,
J. Math. Anal. Appl. (to be published); E. Hille, Analytic Function
Theory (Ginn, London, 1959), Vol. 11

18). Nuttall, J. Math. Anal. Appl. 31, 147 (1970).

""N. Dunford and J. T. Schwartz, Linear Operators (Interscience, New
York, 1967), p. 579

29C. R. Garibotti and M. Villani, Nuovo Cimento A 59, 107 (1969);
C. Lanczos, J. Res. Natl. Bur. Stand. 45, 255 (1950).

2 Handbook of Mathematical Functions, edited by M. Abromowitz
and 1. Stegun (Dover, New York, 1965), p. 332, Eq. 8-1-3.

22Gee Ref. 21, p. 334, Eq. 8-6-19.



Multipole expansions and plane wave representations
of the electromagnetic field*

A. J. Devaney and E. Wolf

Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627
(Received 31 May 1973; revised manuscript received 2 August 1973)

A new and conceptually simple derivation is presented of the multipole expansion of an
electromagnetic field that is generated by a localized, monochromatic charge-current distribution.
The derivation is obtained with the help of a generalized plane wave representation (known also as
the angular spectrum representation) of the field. This representation contains both ordinary plane
waves, and plane waves that decay exponentially in amplitude as the wave is propagated. The
analysis reveals an intimate relationship between the generalized plane wave representation and the
multipole expansion of the field and leads to a number of new results. In particular, new expressions
are obtained for the electric and magnetic multipole moments in terms of certain components of the
spatial Fourier transform of the transverse part of the current distribution. It is shown further. that
the electromagnetic field at all points outside a sphere that contains the charge-current distribution is
completely specified by the radiation pattern (i.e., by the field in the far zone). Explicit formulas are
obtained for all the multipole moments in terms of the radiation pattern.

1. INTRODUCTION

Multipole expansions of the electromagnetic field are
employed extensively both in classical electrodynamics
and in the quantum theory of radiation. Such expansions
originated in a restrictive form in the classical theory
of diffraction by a sphere, especially in the work of
Clebsch,! Mie,? Debye,3 and Bromwich,4 as a “partial
wave” expansion.5 The first fairly general formulation
is implicit in the work of Hansen.® Important contribu-
tions were later made by Heitler,7 Kramers,8 Franz,®
Wallace,10 Blatt and Weisskopf,'! Bouwkamp and Casi-
mir,12 Nigbet,13 and Wilcox.14 The methods employed
in some of the treatments include tensor analysis,
operator calculus, and group theory, though more ele-
mentary derivations have been given.10.12

In a well-known paper dealing with the differential
equations of mathematical physics, Whittakerl5 intro-
duced a multipole expansion of a source free scalar
wave field. He first expressed the solution of the homo-
geneous wave equation as a superposition of homo-
geneous plane waves. On expanding the amplitude func-
tion of the plane waves in a series of spherical harmo-
nics he was then lead to a multipole expansion of the
free field. Whittaker's analysis is conceptually very
simple, and gives a clear understanding of the relation-
ship between the representation of a free field as a
superposition of plane waves and its representation in
terms of multipole fields.

In the present paper, we show that Whittaker's method
may be extended to electromagnetic fields generated by
localized charge-current distributions. To illustrate
the essential feature of the technique, we first show how
a generalized plane wave expansion for a scalar field
generated by a localized source distribution may be ob-
tained. The generalized plane wave expansion contains
not only ordinary (homogeneous) waves, but also waves
that decay in amplitude as the wave is propagated (the
so-called evanescent waves, well known from the theory
of total internal reflection). Such generalized plane
wave expansions have been playing an increasingly im-
portant role in recent years in optics and classical
electrodynamics, and are generally known as angular
spectrum representations.16 We show that the ampli-
tudes of all the plane waves in this representation are
expressible in terms of the spatial Fourier transform,
and its analytic continuation, of the source distribution.
By expanding the amplitude function of the plane waves
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in a series of spherical harmonics we are immediately
lead to the required multipole expansion. In Sec.4 we
consider the electromagnetic field generated by a local-
ized charge-current distribution. The only essential
difference arises from the fact that the amplitudes in
the generalized plane wave expansion of the electromag-
netic field are now vectors, and the appropriate basic
set of functions in terms of which they are expanded are
the vector spherical harmonics instead of the ordinary
spherical harmonics. In the concluding section (Sec. 5),
we show that the angular spectrum representation pro-
vides also a new insight into the well-known relation-
ship between the multipole expansion and the so-called
Debye potential representation of the electromagnetic
field generated by a localized charge-current distribu-
tion.

Our analysis not only provides a new derivation of
the multipole expansion of the electromagnetic field,
but it also reveals an intimate relationship between the
multipole expansion and the generalized plane wave rep-
resentation of the field. From this fact some new results
readily follow. In particular, we obtain new expressions
for the electric and magnetic multipele moments in
terms of certain components of the spatial Fourier
transform of the transverse part of the current distribu-
tion. We also show that the electromagnetic field at all
points outside a sphere that encloses the source distri-
bution is completely specified by the radiation pattern
(the far field), and we derive formulas for all the multi-
pole moments in terms of the radiation pattern. More-
over, as we show elsewhere, our results lead readily to
some interesting new theorems on properties of fields
generated by localized charge-current distributions and
on localized charge-current distributions that do not
give rise to any radiation.17

2. WHITTAKER'S REPRESENTATION OF A SOURCE-
FREE MONOCHROMATIC SCALAR WAVE FIELD

We begin with a brief review of Whittaker's derivation
of the multipole expansion of a source-free, monochro-
matic scalar wave field.

Whittakerl5 showed that a wide class of solutions of
the reduced wave equation (the Helmholtz equation),
(V2 + B2)y(r) =0 (2.1)

(2 = real constant), may be expressed in the form
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k i i i 0 iks-r
1p(r)=z1; [l ag fo do sinay(s)eiks T (2.2)

where 8 is a real unit vector with Cartesian components

s, = sina cosg, s, =cosa. (2.3)

x s, = sina sing,

The right-hand side of (2.2) expresses y(r) as a super-
position of homogeneous plane waves propagating in all
possible directions and, hence, we will refer to it as the
homogeneous plane wave expansion of y(r).

Whittaker showed further, that the homogeneous plane

wave expansion of the multipole fieldl8

Alm(r) -_—jl(kT)Ylm(ey ¢); (2-4)
where j, (kr) is the spherical Bessel function of order I

and ;™ (0, ¢) is the spherical harmonic of degree ! and
order m, isl?9

AT (r) = (~ 9! % [l ap foﬂ da sina Y™(a, B)eiks-T,
(2.5)

Here 7,6, ¢ are the spherical polar coordinates of the

field point r, referred to the same system of axes as the

unit vector s, so that

x =7 sind cos¢, y =7 sing sinp, 2z =7 cosd. (2.6)
Returning to the general case, Whittaker expanded the

plane wave amplitude function /(8) in a series of spheri-

cal harmonics,

0 1

Ye) =2 X dapym(a,p),
1=0 m=-1

and on substituting from (2. 7) into (2. 2) and using (2. 5)

he obtained an alternative representation of Y(r), namely

the multipole expansion

°0 l
Y =k 2 El ap AR (r).

1=0 m=~

2.7

2.8)

The multipole moments aj* may, of course, be expressed
from (2.7) in terms of the plane wave amplitudes y/(s)
by using the fact that the spherical harmonics form a
orthonormal set over the unit sphere. The result is
ap =il f_: dg f(;r da sina ¥(s)Y7*(a, B), (2.9)
and shows that the multipole moments are, apart from
the trivial factor ¢/, simply the projections of the plane

wave amplitudes y/(s) onto the set of the spherical har-
monics Y;" (o, B).

It should be noted that since each plane wave in (2. 2),
and each multipole field in (2. 8), obey the Helmholtz
equation (2. 1) throughout the whole space, each of the
two representations is a mode expansion of the general
solution of that equation. The relations (2.7) and (2.9)
establish an intimate connection between the two repre-
sentations. Unfortunately, Whittaker's elegant results
are of limited applicability since they are essentially
existence theorems. They leave unanswered the ques-
tion of how the amplitudes y/(8), or the multipole mo-
ments a]”,are to be determined in any particular case.
Moreover, the representation (2. 2) [and, consequently,
(2.8)] is valid only for source-free fields. Consequently,
Whittaker's derivation of the multipole expansion is of
limited use in electromagnetic theory where one must
frequently deal with fields generated by sources that are
not situated at infinity.

In this paper we will show that the insight gained from
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Whittaker's analysis leads readily to a new, and basi-
cally simple, derivation of the multipole expansion of
wavefields generated by a localized source distribution,
and also to explicit expressions for the multipole mo-
ments. The derivation is based on a generalized plane
wave expansion which includes not only homogeneous
plane waves, but also evanescent plane waves (i.e., plane
waves that decay exponentially in amplitude in a particu-
lar direction). In Sec. 3 we consider the scalar field and
in Sec.4 we will treat the electromagnetic field.

3. MULTIPOLE EXPANSION OF A MONOCHROMATIC
SCALAR WAVE FIELD GENERATED BY A
LOCALIZED SOURCE DISTRIBUTION

Let us consider a real, monochromatic scalar wave
field

Y(r,t) = Ry (r)e*vt),
generated by a source distribution
p(r,t) = R(p(r)e7ivt),
in the infinite free space. Here, w is a real positive

constant and ® denotes the real part. Then y(r) and
p(r) are related by the differential equation

(V2 + k2)Y(r) = — 4mp(r), (8.1)
where
k= (.U/C, (3. 2)

¢ being the velocity of propagation. We will assume that
the source distribution p(r) is a continuous function of
position and is confined to a finite region around the
origin. Hence,p(r) =0 when7 = | r|> R,where R is
some real constant.

The field y(r) generated by the source distribution
p(r) is identified with that particular solution of Eq.
(3.1) which behaves at infinity as an outgoing spherical
wave, and is well known to be given by

)= [, o)

eiklr-xr’l

dasr’. (3.3)

r—r|

Now, the spherical wave which enters as the kernel of
the integral transform (3. 3) may be expressed in the
following form due to Weyl:20

eiklr-r'l  jp

m i ) »
r—r'| 2nm f-w dp fc, da sina eiks+@cr)

(3.4)

where 8 = g (@, B) is again a unit vector with Cartesian
components given by (2.3). However, the polar angle o
is no longer necessarily real, but takes on all values on
the contours C* and C™ in the complex a plane shown in
Fig.1, It is understood that in (3. 4) the contour C*
applies when z — 2’ > 0, and the contour C~ applies when
z —2'< 0,z and 2’,being, of course, the Cartesian z
coordinates of the field point r and the integration point
r/, respectively.

On substituting from (3.4) into (3. 3), and on inter-
changing the order of integration, we obtain the follow-
ing representation of y(r):21

ik oo :
w(r) = = f_:: dp fci da sina y(g)eiks-T (3.5)
where the spectral amplitudes y/(s) are given in terms
of the source distribution by the formula
V(s)

= [ .. p P(X)etes T a3y, (3.6)
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In (3.5), the contour C* is used when z > R and C~ when
2 < — R. It is not difficult to show that the interchange
of the order of integration in deriving (3. 5) is justified
provided |z|> R, i.e.,provided the field point is outside
a strip bounded by planes parallel to the z plane and con-
taining the source. However, since the orientation of our
coordinate system is arbitrary, such a representation
may be used to represent the field outside any strip
bounded by two parallel planes tangential to the sphere
of radius R, centered at the origin.

The representation (3. 5), just like Whittaker's repre-
sentation (2. 2) of the source-free field, expresses y/(r)
as a superposition of plane waves. However, since in
(3.5) the unit vector s is real on a portion of the contour
of integration and complex on the rest of the contour,
(3.5) includes both komogeneous plane waves (corres-
ponding to real 8) and inkomogeneous (called also evanes-
cent) plane waves (corresponding to complex22 g), In-
tegrals of this type are said to represent the wave field
in the form of an angular spectrum of plane waves.

The spectral amplitudes ¥ (s) as defined in (3. 6) are
intimately related to the threefold Fourier transform
p(K) of the source distribution p(r):

S(K) = Y p-iK-T ' 347
pK) = [ .., p(r)e i’ a3y, (3.7

On comparing (3. 6) with (3. 7), we conclude that J/(s) is
simply p(K) with K = ks;i.e.,

Y(s) = p(ks).

In the definition of the Fourier transform p(K), the
variable K conjugate to r’ is, of course, real. However,
since the integral on the right-hand side of (3.7) extends
over a finite domain (because, by hypothesis,p = 0 when
r’ > R) and, moreover, since p was assumed to be con-
tinuous, it follows that p(K) is the boundary value, on the
real K, ,K ,K, axes,of an entire analytic function of
three complex variables?3 K ,K ,K,. Consequently,
the relation (3. 8) is valid for all (real and complex) unit
vectors s and, moreover, shows that ¢ is the boundary
value (on the contours C* and C-) of an entire analytic
function of three complex variables.

(3.8)

Following Whittaker's treatment of the free field, we
next expand the spectral amplitudes y/(8) into a series of
spherical harmonics, viz.,

) H
V)= 22 2 —dlapryYp(ae,p), (3.9)
10 m=-1
where the expansion coefficients (multipole moments)al®
are simply the projections of {/(8) onto the spherical
harmonics:
al’ = i f_: dp joﬂ da sina @(S)Yl"‘*(a,ﬁ). . (8.10)
It is important to note that although the multipole mo-
ments, defined by (3. 10), depend explicitly only on those
spectral amplitudes {(s) which are associated with real
s (i.e., those corresponding to homogeneous plane waves
in the angular spectrum representation), the expansion
(3.9) is valid for all unit vectors associated with the
complex contours C*;this result is a consequence of the
fact that J(s) is the boundary value of an entire analytic
function.

We can also readily express the multipole moments
a7 in terms of the source distribution p(r). To do this,
we simply substitute (3. 6) into (3. 10) and interchange
the order of integration. We then obtain the following
expressions for the multipole moments:

J. Math. Phys., Vol. 15, No. 2, February 1974

236

Ima Ima

R

o

C+

FIG.1. The @-contours of integration C* and C-,

ap = [ep @ro)it [ dp [ da sina ¥, fleihe,
= 4n [, PE) AT @), (3.11)

In deriving (3.11) we have made use of (2.5).

Next, we substitute the expansion (3.9) into the repre-
sentation (3. 5) of ¥ (r) and interchange the order of inte-
gration and summation. We than obtain, in analogy with
(2. 8), the following series expansion for y/(r):

Yr) =k 25 22 a7 (r),

(3.12)
1=0 I==m
where
nr(r) = 9! —2% [ ag [,, da sina Y] (2, peirs'r,
(3.13)

Now, it is not difficult to show that the expression on the
right-hand side of (3.13) is precisely the angular spec-
trum representation of the scalar multipole field of
degree [/ and order m,i.e.,
n7{r) = h(;) (kr)YYT (0, 9), (3.14)
where (v, 8, ¢) are the spherical polar coordinates of the
field point r and k" is the spherical Hankel function? of
the first kind of order . This result, which is the counter-
part of Whittaker's result expressed by (2. 4), appears to
have been first stated by Erdélyi,24 and is proved in
Appendix A of the present paper. Thus, we see that
(3.12) is the multipole expansion of y(r) and a]* are the
corresponding multipole moments.

Since the angular spectrum representation (3. 5), from
which the multipole expansion (3.12) was derived, con-
verges only throughout ihe two half-spaces z > R and
2 < — R, it would appear that this expansion is valid only
at field points r situated in these two regions. However,
as is well known, the multipole expansgion (3.12) repre-
sents the field correctly at every point outside the source
region, i.e., for all values of r > R. For the sake of com-
pleteness, this result is verified in Appendix C.

The angular spectrum representation also yields
readily the far zone approximation for ¢ (r). If we let
kr - o in a fixed direction specified by a unit vector

u, =r/7, (3.15)
we have

|lr —r|~r—1r'eu,, (3.16)
and Eq. (3. 3) then gives

viru,) ~ p(ku,)eitr/r  (kr - ©), (3.17)
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where, as before, p(K) is the Fourier transform of p(r)
[Eq. (3.7)]. Now according to (3.8),p(ku,) is precisely
the spectral amplitude ¥ (u,) of ¥, so that (3.17) may be
expressed in the form

Yiru,) ~ P(u,)(et*7/r)

This formula shows that the radiation patiern of the field
is precisely given by the spectral amplitude function
Y(u,) for real unit vectors u, (corresponding to points on
the contours C* and C~ that coincide with portions of the
real @ axis). In other words, the radiation pattern of the
field in any particular direction u, is equal to the com-
plex amplitude of a certain plane wave in the angular
spectrum representation of the field, namely the plane
wave propagated in the direction u,. This result may be
understood in physical terms as follows: The angular
spectrum representation (3. 5) expresses y(r) at every
point r outside the source region » < R as a superposi-
tion of plane waves, both homogeneous and evanescent
ones. As the field point r = 7u, gradually moves further
away from the source region in any fixed directionu,,
the evanescent waves gradually die out because of their
exponential amplitude decay. The contribution of the
homogeneous waves gradually decreases also, but for a
different reason, namely because they progressively can-
cel each other out by destructive phase interference. In
the asymptotic limit as k¥ = ©  only the single homo-
geneous plane wave in the angular spectrum that is
propagated in the direction u, survives, and it is this
wave that determines the behavior of {/(r) in the far zone,
as Eq.(3.18) shows. This argument may be made more
rigorous with the help of the principle of stationary
phase.25

(kr —» ), (3.18)

If in Eq. (3.18) we express l,D(ur) in terms of the multi-
pole moments [Eq. (3.9)] we obtain, at once, the asympto-
tic approximation for i/, valid in the far zone, (i.e., as
kr — w):
etk

o) l
LD aprre,0) (row),
Lo me (3.19)

Yiru,) ~

where (6, ¢) are the spherical polar coordinates of the
unit direction vector u,.

Before concluding this section it is worthwhile to
stress the following points: The angular spectrum rep-
resentation (3.5), and the multipole expansion (3.12),
are mode expansions in the sense that they express the
field Y (r) in terms of certain elementary fields (plane
wave fields and multipole fields, respectively), each of
which satisfies the same equation as does Y/ (r) outside
the source region,namely the Helmholtz equation
(V2 + k2)y = 0. The range of validity of each of the
two expansions is different. The angular spectrum ex-
pansion represents y/(r) outside the strip |z| < R, the
multipole expansion represents it outside the sphere
¥ < R. The expansion coefficients in the two represen-
tations are related by Egs. (3.9) and (3. 10).

4. MULTIPOLE EXPANSION OF A MONOCHROMATIC
ELECTROMAGNETIC FIELD GENERATED BY A
LOCALIZED CHARGE-CURRENT DISTRIBUTION

Let us now turn our attention to the electromagnetic
field. Just as in the scalar case, two situations are to be
distinguished, namely when the field is source free and
when it is generated by a localized source distribution.
We will discuss here only the second case.?6

We consider then a real, monochromatic, electromag-
netic field
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E(r7 t) = (R(E(r)e'“"), H(r, t) = (R(H(r)e"iwt)’

generated by a charge-current distribution2?

p(r,t) = R(p(rleivt), j(r,?) = Rj(r)e ivt),

in the infinite free space. As before,w is a real posi-
tive constant and ® denotes the real part. We assume
that p(r) and j(r) are continuous and continuously differ-
entiable functions of position and vanish identically when
r > R,where R is some real constant. From the Max-
well equations it readily follows that E(r) and H(r)
satisfy (in Gaussian system of units) the equations28

(V2 + k2)E(r) = — 4w [i(k/c) j(r) —Vp(r)], (4.1a)

(V2 + k2)H(r) = — 47 [(1/c)V X j(r)]. (4.1b)
The fields E, H generated by the charge-current distri-
bution p, j are identified with those particular solutions
of Egs. (4. 1a) and (4. 1b) that behave at infinity as out-
going spherical waves.

It is clear from Eqgs. (4. 1) that each Cartesian compo-
nent of the electromagnetic field vectors E, H satisfy
inhomogeneous Helmholtz equations of the form (3.1).
Consequently, we may apply the results established in
the preceding section to each of the Cartesian compo-
nents. In particular, it follows by making use of (3. 5)
and (3. 6) that the field vectors have the following angu-
lar spectrum representations,29 valid throughout the
two half-spaces z< — R and z > R:

E(r) = 12’% f; dp fc: do sina ﬁ(s)eik&r, (4.2a)
ik ™ s Y ikS.
H(r) =5 f_,, dB fct da sina H(s)eiks T, (4.2b)

where the spectral amplitude vectors f:(s) and ﬁ(s) are
given by

E(s) = [,_,[(k/c)i(x') —Vp(x')]eiks-T a3y, (4.3a)

H(s) = [, [(1/0V X j@)]e ks r ddy, (4.3b)
We may express E(s)and H(s) in simpler forms by intro-
ducing the three-dimensional Fourier transforms of j
and p:

i®) = [, i) ek g3, (4. 4a)

p(K)= fr,fﬁ p(r') e ik’ g3y’ (4. 4p)
Then (4. 3a) and (4. 3b) readily give the following expres-
sions for the spectral amplitudes:

E(s) = — (i/c)ks X [s X ] (k8)], (4.52)

H(s) = (i/c) ks X j (ks). (4. 5b)
In deriving Eq. (4.5a) from Eq. (4. 3a) we made use of
the equationV + j(r) — ick p(r) = 0 which expresses the
conservation of the charge. From Eqgs. (4.5) it follows
that

E(s) = — s x H(s), (4. 6a)

s+ E(s) = s+ H(s) = 0. (4. 6b)
Consequently, for each s, the terms in the integrands of
(4.2a) and (4. 2b) are plane waves that satisfy the homo-
geneous Maxwell equations for a monochromatic field
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with the frequency w = kc throughout the whole space.
Thus, the angular spectrum representation (4. 2) is,
throughout its domain of validity (/2 | > R), a mode ex-
pansion of the electromagnetic field. We note in passing
that, in analogy with the scalar case, the spectral ampli-
tudes E(s) and H(s) are, according to Eqgs. (4. 5), simply
related to the spatial Fourier transform, and its analytic
continuation, of the current distribution j(r).

We could now follow the procedure employed in Sec. 3
to expand E(8) and H(8) into a series of spherical har-
monics with constant (vector) coefficients. If these ex-
pansions were then substituted into Egs. (4. 2), and use
was made of Eq. (3.13), we would obtain expansions of
the two field vectors as series of the scalar multipole
fields I1;*(r). Unfortunately, although such expansions
have been discussed in the literature3© they are not very
useful. One reason for this is that the individual terms
in the expansion need not have a vanishing divergence
and, consequently, such a representation will not provide
a mode expansion of the electromagnetic field outside
the source region. It is well known that the proper
generalization, which is a mode expansion, is an expan-
sion in terms of so-called electromagnetic multipole
fields [defined by Eqgs. (4. 15) below], these being the
appropriate electromagnetic vector analogs of the scalar
multipole fields.

To obtain the expansions for E(r) and H(r) in terms of
the electromagnetic multipole fields, we first expand the
spectral amplitudes E(8) and H(s) in terms of the vector
spherical harmonics. A vector spherical harmonic
Y," (e, B) of degree ! and order m may be defined in
terms of the ordinary spherical harmonics ¥"{a, 8) by
means of the formula

Y7 (a,h)
where £

=&, Y7 (a,B), (4.7

is the “orbital angular momentum operator:

sina (4. 8)

. ) ] 1 a
L, =— ks XV, :_z<ue aT;_'—ua 5@)
HereV,, denotes the gradient operator in ks space,u_,
uy being unit vectors in the positive o and § directions,
respectively. A discussion of the main properties of
these functions can be found, in Refs. 11 and 31, Here,
we only remark that the vector spherical harmonics
Y]" are everywhere tangent to the unit sphere [i.e.,
s - Y[ (a,B) = 0],that they form an orthogonal set in
the sense that

I dﬁfo'ézasma Y7 (@, B) Y2 (@,8) = WL+ 1)6,; 6,4,
(4.9)

and that they, together with the associated functions

8 X Y,” (o, 8), form a complete orthogonal basis32 for all
well-behaved vector functions F(8) defined on the unit
sphere s2 = 1 and tangential to it (i.e., such that s *F(s) =
0). Thus, in particular, E(s) and H(s) defined by Egs.
(4.5) may each be expanded in terms of these two sets
of vector functions and we have, in analogy with (3.9):

o0 l
i 121 le ) as X Y (a,B) + DY (a, B)],
" (4.10a)
-~ o« !
H(s) = 2, 20 i~ aPrY(a,B) +b"s X Y ™(a,B)],

=1 m=-1
(4.10pb)

where we have made use of the relation (4. 6a). The fac-
tor (— 7)¢ is included in these expansions to lead to the
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conventional definition of the expansion coefficients (the
multipole moments). The I summations begin now with
! = 1 rather than with / = 0, since there are no vector
spherical harmonics of zero degree.

By making use of the orthogonality relation (4.9) we
may express the expansion coefficients a]” and b]" in
terms of the spectral amplitudes E(8) and H(s) of the
angular spectrum representation (4.2). The result is

- ) ) o ’
“=- W:_l) J; a8 J; da sinefi(s)-Y (""Bz; 11a)
. a

X
o = l(zz+ 1) L dp [ da sina E(s)-Y]" (@, 6). (4.11b)

We may also express a* and b;" in terms of the Fourier
transform of the current density itself by substituting
into (4.11) from (4.5). We then obtain the following ex-
pressions33for a* and b7*:

m _ i1

a4 = l(l+1)< )f dﬁf da sine[s X ](ks)] *a, B),
(4.12a)

me_ l(llj:l ( )] dp fda sina{sx[sxj(ks)[}* *(f:,,lit)

Again, by analogy with the procedure that we employed
in our treatment of the scalar case in Sec. 3, we substi-
tute the expansions (4.10) of the spectral amplitude vec-
tors E(s) and H(s) into the angular spectrum representa-
tions (4.2) of the fields, interchange the order of inte-
gration and summation and we then obtain the following
series expansions for E(r) and H(r):

E(r) = Z) Z) [a7 ES, (r) + b ER, (D], (4.13a)
Hir) = % :2-1[“"" ¢.(r) + I HE, ()],  (4.13b)
where

E{,(r) = H},(r)
~ (i) 2% ST aB [, da sina[s x Y](a, g)lei*sr,
(4.14a)
E! (r) = — H,, (r)

= (- )¢ lk dB ,da sina Y7 (o, B)lei#s T
- 2
(4.14b)

We show in Appendix B that the integrals on the right-
hand side of Egs. (4.14) are the usual electromagnetic
multipole fields,i.e.,

E¢, (r) = HE (1)
E! (r)=—H, (r) = &V X [r O (r)],

=V x {V x [r 07 ()]}, (4.15a)

(4.15Db)

where II[* (r) is, as before the scalar multipole field de-
fined by Eq (3. 14) (r),Hlm (r) are the fields gene-
rated by an electric multlpole and the fields E?,, (r),

H" (r) are those generated by a magnetic multipole,
each of degree ! and order . Thus, we see that Egs.
(4.13) are the usual maltipole expansions of the electric
and magnetic fields generated by a localized charge-
current distribution, the coefficients a}” and b]" being
the electric and magnetic multipole moments, respec-
tively. As is well known, each electromagnetic multipole
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field satisfies the homogeneous Maxwell equations (for a
monochromatic field of frequency w = kc) throughout the
whole space, with the exception of the origin. Thus, Eqgs.
(4.13) are true mode expansions of the field E, H outside
the source region. Although we have derived the multi-
pole expansion (4.13) from the angular spectrum repre-
sentation, which is valid only when |z|> R, it is, in fact,
valid everywhere outside the source region,i.e.,for all
r > R. The reason for this is essentially the same as in
the scalar case. (See Appendix C.)

We see now that the multipole expansion of the electro-
magnetic field generated by a localized charge-current
distribution arises naturally when the spectral ampli-
tudes of the angular spectrum representation of the field
are expressed as a series of vector spherical harmonics
[Egs. (4.10)]. The multipole moments are simply the
projections of these spectral amplitudes onto the set of
vector spherical harmonics [Egs. (4.11)]. The multipole
moments are also seen to be projections of certain com-
ponents, (namely, those for which |K| =% = w/c), of the
Fourier transform of the transverse part of the current
distribution onto the vector spherical harmonics Y] (@, 8)
and 8 X Y7* (@, B) [Egs. (4. 12a) and (4.12b)].

The formulas (4. 12), which express the multipole
moments in terms of the transverse components of the
Fourier transform j of the current density appear to be
new. It is not difficult to express the multipole moments
in a more conventional form involving the current den-
sity j directly. For this purpose, we first substitute into
Egs. (4.12) from (4.4) and obtain the formulas

T )
- Y- [k d3r" il
0 W+ 1)<c> fr’sR (')

- [ ap Jy da sinas x Y*(a,p)eiks-r,  (4.16a)

Tar DA
pm o= L _> asr j(r'
P =D () e 710

- [T ap fo" da sina Y (a,B)e7i*s' ', (4,16b)

In writing down the expression (4.16b) we made use of
the relation s X (8 X Y*) = — YJ*, which follows from
the fact that the vector spherical harmonics are every-
where tangeéntial to the unit sphere s2 = 1. Except for
the nature of the a-contour of integration, the (@, B) in-
tegrals in Eqgs. (4.16) are very similar to those appear-
ing in the angular spectrum representation of the elec-
tromagnetic multipole fields [See Appendix B, Egs. (B12)
and (B13)]. In fact, if one carries out a strictly similar
calculation as given in Appendix B, except that instead
of the multipole field I1* (r) = kY (kr) Y7* (9, ¢) with
source at the origin r = 0 one considers the source free
multipole field A7 (r) = j, (k) Y,” (6, ¢), then comparison
of Egs. (3.13) with (2. 5) shows that, except for a trivial
proportionality factor — ¢/2 (which arises from the
difference between coefficients on the right-hand sides
of the two equations), the only change in the calculation
will be the replacement of the @-contours C* by the real
contour 0 < @ < 7. One then obtains, in place of Egs.
(B12) and (B13), the identities

iRV X [r A7 (r)]
= ()t % JUap [ da sina Y7 (a,B)eths T, (4.17a)
vV x{v x [ram ()]}

= i)l% Jldp [ do sina s x Y7 (a,p)eitsr.

(4. 17p)
With the help of these two identities, one readily obtains
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from Eqgs. (4.16) the following, well-known expressions
for the multipole moments:

ar 4ni (l) -L'SR i) {v x [V X (e’ A7 @)} a37,

{1+ D\c . 150

m __ 47 k (Yo o m¥ s ,
by = i+ 1)(?) Llsﬁl(r) {V x[!‘ AT (x )]}d3fy(.4 o
.18b

Just as in the scalar case, we may readily obtain from
the angular spectrum representation the far zone ap-
proximation for the electromagnetic fields E(r) andH(r).
In fact, if we apply the result expressed by Eq. (3.18) to
each of the Cartesian components of E(r) and H(r) sepa-
rately, we see at once that

E(ru,) ~ E(,)(ei#7/7)

(r » »), (4.19a)

H(ru,) ~ H@,)(ei*r/r) (br - ©), (4.19b)
for any real direction specified by the unit vector u, .
The physical significance of these two relations may be
readily understood from similar considerations as given
in connection with the corresponding scalar equation

(3.18).

If in Eqgs. (4. 19) we express the spectral amplitudes E
and H in terms of the multipole moments by means of
Eq. (4.10), we obtain at once the usual asymptotic
approximations for the electromagnetic field, valid in the
far zone (i.e,,as kv > ©):

o0 l

2 X

L=1 m=-1

(~ i)t [alu,x Y0, ) + bIYP(0, 9)], (4.20a)

o 1

2

=1 m=~1
— D= aP Y[ (0, 9) + b, X Y76, §))

eik‘r

E(ru,) ~ —

ik
H(yur) ~ ErRY

(4. 20b)

Here, (8, ¢) are again the spherical polar coordinates of
the unit direction vector u, .

We note, in passing, that since, according to Eq. (4.19a),
the radiation pattern of the field [i.e., the vector function
of u, that multiplies the scalar field exp(ik7)/r in the
asymptotic expansion of E(ru,) as kr > «©}, is given pre-
cisely by the spectral amplitude vector E(u,) for all real
unit direction vectors u,, Egs. (4. 11), together with Egs.
(4. 6), may also be interpreted as giving all the multipole
moments in terms of the radiation pattern. Thus, we see,
incidentally, that all the multipole moments, and hence by
Egqgs. (4.13) the electromagnetic field at all points outside
the sphere v > R, are completely specified by the radia-
tion pattern.

Finally, we may readily deduce from our results ex-
pressions for the time averaged power radiated by the
source. It is given by the integral of the radial compo-
nent of the time averaged Poynting vector across a
limitingly large sphere T of radius 7 (with kr — ®):

(Py= % ® jz [E(r) X H*(r)] * u,d=. (4.21)

On substituting from Eqs. (4.19) into (4.21) we obtain
the following expression for ( P):
c " L . ~ ~
(P) =2 & [ do [ ab sino[E@,) X B*@,)] v,
(4.22)
But from the orthogonality relations between the three
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vectors E(u,),H(u,),and u,,
see that

indicated by Eqgs. (4. 6), we

[E(u,) x B*(@,)]u, = B*@,)-E(,),
= H*(u,)H(u,).

(4.23a)
(4.23b)

If we now subst1tute from (4.23a) [or (4.23Db)] into (4. 22),

and express E(u )[or H(u,)] in the series form (4.10a)

[or (4.10b)], and "if we also make use of the orthogonality

relations (4.9) between the vector spherical harmonics

we find that

(p>:80_ﬂ 2 z) I+ 1[lai2 + |bm|2], (4.24)
=1 m=—1

Equation (4.24) is the well-known expression for the

radiated power in terms of the multipole moments.

5. THE MULTIPOLE EXPANSION AND THE DEBYE
POTENTIALS

Many of the existing treatments of multipole expansions
and of other problems arising in electromagnetic theory
employ a representation of the electromagnetic field in
terms of two scalar potentials that was introduced by
Debye3 in a well-known investigation relating to the
pressure exerted by light on a homogeneous sphere
composed of arbitrary material. In this concluding sec-
tion we briefly show that the angular spectrum represen-
tation gives a new insight into the relation between the
multipole expansion, and the Debye representation,34

The Debye potentials I (r) and II ,(r) are solutions of
the scalar Helmholtz equation which yield an electromag-
netic field in free space by means of the formulae (the
Debye representation):

E(r)

=V X [V X (rIL(r)] + iV X [rI,(r)], (5.1a)

H(r) = — itV X [rIl (r)] +V X [V X(rII,(r)}]. (5.1Db)
It is clear that the multipole expansion (4.13) may be
expressed in the form (5.1) if we substitute into (4.13)
the definitions (4.15) of the electromagnetic multipole
fields and interchange the order of differentiation and
summations. We then obtain the following expressions

for the electric and magnetic Debye potentials:

o0 1
2, 2o arnp(r),

1=1 m=-1

f)Z}bH(r)

1=1 m=-1

I,(r) = (5.2a)

o, = (5. 2b)

The Debye representation is intimately connected with
qur decomposition (4.10) of the spectral amplitudes
E(s) and H(s) into series of the vector spherical harmo-
nics Y;* and s X Y;*. To see this, let us introduce in
(4.10) the definition (4.7 of the vector spherical harmo-
nic Y}* in terms of the ordinary spherical harmonic Y;*.
If then we interchange the orders of differentiation and
summation we obtain the formulas

B(s) =sx £, A(s) + £, B(s), (5. 3a)
H(s) =— £_B(s) + sx £_A(s), (5. 3b)
where o .
As) = z§ Z} ~dtary™(,B), (5.4a)
<O l
Bis)= 20 2 (Y (a,p). (5.4b)

=1 m=-1

Consider now the scalar fields A(r), B(r), whose spec-
tral amplitudes are A(s) and B(s), respectively:
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A(r) = % L aB [, da sina A(g)eitsr, (5. 5a)
B(r) =% " 48 [, da sina B(s)eiksr.  (5.5b)

If we substitute from (5.4a) into (5. 5a), interchange the
order of integration and summation, and recall, also, the
angular spectrum representation (3.13) of the multipole
tield I1"(r), we obtain the following expression for A(r):

A(r)=*k E Z) (— i)ia]
(21 me=1
In a strictly similar way, we obtain from (5. 4b) and
(5. 5b), if again we use (3. 13), the following expression
for B(r):

U (r). (5. 6a)

1

B(r) =k Z}_} 2 aterapm. (5. 6b)
Comparison of Egs. (5.2) and (5. 6) shows that
A(r) = kIl (r), B(r) =FkI,(r), (5.7

i.e., apart from the proportionality factor 2,A(r) and
B(r) are precisely the Debye potentials and, hence, the
amplitude functions A(s) and B(s) mt'roduced in (5.3) are,
apart from the proportionality factor &, the spectral am-
plitudes in the angular spectrum rep'resentation of the
Debye potentials.35
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APPENDIX A: ANGULAR SPECTRUM
REPRESENTATION OF A SCALAR MULTIPOLE FIELD

In this Appendix, we show that the angular spectrum
representation of the scalar multipole field II *(r), de-
fined by Eq. (3.14), is given by Eq. (3.13). For this pur-
pose we will use the well known result that a multipole
field I1*(r) of any order m = 0 may be generated from
the spherical wave exp(ikr)/kr,[which apart from a
normalization constant is the lowest order scalar multi-
pole field I1,%(r)], by means of the following relation24:

1 /0 0 1 2\)eikr
mr)=Ccnr i—)| Pm(= Z\E
o) |:zk <a * 6y>] <zk az> "
(A1)
Here, the operator
1 9
pm >
! <zk 0z
is defined by the formula
()= b w| : (A2)
itk 0z du™ w=(1/ik8/01

where P,;(u) is the Legendre polynomial of degree of !
and C* are normalization constants, defined as

L@+ 1)1 — m)!)l/z
m __ m(__ l _— -
F=ENmed ( an(l + m)! ' (A3)
When m < 0 we use the identity
mym'(@r,e,¢) = (- 1) 0" (r,0,— ¢), (A4)

where, of course, (r, d, ¢) are the spherical polar coordi-
nates of r.

We now express the spherical wave exp(ikr)/kr in (Al)
in the form of an angular spectrum representation, given
by Weyl's formula (3. 4):
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eikr _ i (A5)

= 5 f_; dp fct da sina eiks-r
and interchange the order of integration and differentia-
tion [which may be shown to be justified when |z|> 0 be-
cause the double integral in (A5) is then uniformly con-
vergent]. We then obtain the following expression for
7 (r), valid when |z|> 0 and m > 0:

npe) = [ dp [, do sina F(a,p)eitsr, (A6)
where

F(a,B)etksr

om0 L AN ol M iss
=3 e 1) P et am

Now, with the Cartesian coordinates of s given by (2. 3),
we have
s*r = x sino cosf + y sina sinf + z cosa, (A8)

and we then readily obtain from (A7) the following ex-
pression for F(a, 8):

Fla,p) = é C7 sinma eimf Pm)(cosa). (A9)
But
sinma P{™ (cosa) = PI*(cosa), (A10)
where P[" is the associated Legendre polynomial of
degree ! and order m. Hence,
Fla,B) = (i/2n)C"P " (cosa)eimb
= (i/2r) (—i)'¥Y(a, B), (A11)
where
Yr(a,B) =L CI"Pl (cosa ) eimb (A12)
is the spherical harmonic of degree / and order m.
Finally, on substituting from (Al11) into (A6) we find
that
7 (r) =2Lﬂ i)t [1 dB [, da sinaYy(a,p)eitsT,
(A13)

which is the desired result valid when |z |> 0 and

m = 0, Although, as previously mentioned, the inter-
change the order of integration and differentiation
which lead to (A13) is justified only when |z|> 0, (A13)
can be shown to be valid also when z = 0, except at the
origin, in the sense of the following limit:

Hrln (I') | z=0

= lim (4 ["d8 [, da sina Y™(a,p)eiksT,
Izl >0 27r( ) f_,, cht HICH) (A132)

To determine the angular spectrum representation for
N7 (r) when m < 0, we first express the scalar product
8 °r in (Al13) in a more explicit form, using Eqs. (A8) and
(2.6):

8°r = r(sinf sina cos(B + ¢) + cosf cosa). (Al4)

Equation (A13) then becomes, on substitution from (A14):

m _ A . T : m
1) l(r)_ﬂ(__ i)t [ dp [,.dasina v,™(a,p)

X eikrlsing sina cos(B+¢)+cosod cosal, (A15)
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From (Al4) and (A4) it follows that

Wimi () = (- )™ - 9 [7dB [, da sina Y, (@, B)

X gikrlsine sina cos(B-g)cose cosal

(Al6)

If in (A16) we change the variable of integration from 8

to — B and use the relation

Yiimi(a,p) = 1)Imy,)n(@,— p),
and also the formula (Al4), we find that
- i . " . _ .

my ™) =o( 9) [l as fct da sina ¥;'™! (a,p)eits-r,
(A17)

If now we set — |m]| = m where m < 0,Eq. (A17) becomes

formally identical with (A13). Thus, (Al3) is valid for

both positive and negative integers m,(— [ < m < [),as
we wished to show.

APPENDIX B: ANGULAR SPECTRUM
REPRESENTATION OF AN ELECTROMAGNETIC
MULTIPOLE FIELD

We will show in this Appendix that the angular spec-
trum representation of an electromagnetic multipole
field, defined by Egs. (4.15), is given by Eqgs. (4. 14), i.e.,
that

v x{vx[rnpm]} = 9’ %f: ap [, da sina

X [s X Y"{a,B)]eiks-T  (Bla)
kY X [FI(r)] = (= 4)! Z;_:; Sl ag [, da sina
XY™(a,B)et*s: , (Blb)

We derive first the formula (Blb). We have, by using
a standard vector identity,

#{V x [r07 ()]} = R {IP @)V X r—r xVI] ()}

= kL, I (r), (B2)
where we have used the fact thatV X r = 0. In (B2),£,
is the “orbital angular momentum operator” in r space,
viz,

. . 0 1 0

£ =— X = — — e —— —
” ir XV i (u¢ 30 " sind u, a¢>, (B3)

where u,,u, are unit vectors in the positive ¢ and 8
directions, respectively. Now the operator £, does not
act on the radial coordinate » and, consequently, if we
recall the definition (3. 14) of the scalar multipole field
I1}* (r), we may express (B2) in the form

VX [rI}(r)] = khy RV)XP (9, ), (B4)
where
Ylm(e, ¢) =°B7Ylm(es ¢) (B5)

is the vector spherical harmonic of degree [ and order
m,

Next, we will make use of the following identity, which
expresses a vector spherical harmonic as a linear com-
bination of ordinary spherical harmonics: 36

YPr6,0)=a Y7 10,0 e+ a Y7L, ¢)e,
+mYPr(6,d)u,, (BS6)

where
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a = [(I—m)(l+m + 1)]1/2,

a, = [(I +m)(l—m + 1)]/2, (BT)

€ =z,—iv), €=3@ +iu), (B8)

and u,,u,,u, are unit vectors in the positive x,y, and z
directions, respectively. On substituting from (B6) into
(B4), and recalling once again the definition (3. 14) of
I (r), we obtain at once the identity

iRV X [r0O7 (r)]
=kla. 0™ (r)e. + a. 0] Y (r)e, + mO7(r)u,]. (BY)

We now express each of the three scalar multipole
fields appearing on the righthand side of (B9) in terms
of the angular spectrum representation (3. 13) to obtain
the identity

iRV X [rII7(r)]

=k{— i) : f dg th da sina G(a, f) eiks-r, (B10)
where
G(a,B) = a. Y (a,p) €.
+a.Y"  a,p) e, + my7(a,B)u,. (Bl1)

But according to (B6), the right-hand side of (B11) is
precisely the vector spherical harmonic Y}* (a, 8), i.e.,
G(a,B) = Y™ (a,B). Hence, (B10) gives

kV X [rII7 (r)]

= (i) % [l ap [, da sina YP(a,p)eitsr, (B12)

which establishes the representation (B1b).

Next, we apply the curl operator to (B12). The curl
operator may be taken under the integral signs on the
rhs of (B12) since the double integral may be shown to
converge uniformly when |z | > 0. We then obtain the
formula

v x{v x[r 07(r)]}

= (~ )¢ 12% f_ﬂ" dp fct da sine 8 X Y" (a,B)ei4sT,
(B13)

which establishes the representation (Bla).

We should note that the two expansions (Bla) and (Blb)
are valid for all z # 0 and, moreover, can be shown to
have limiting values as | z | — 0 which correctly repre-
sent the electromagnetic multipole fields on the plane
z = 0, except at the origin [cf. Eq. (A13a) of Appendix A].

APPENDIX: C: DOMAIN OF VALIDITY OF THE
MULTIPOLE EXPANSION (3.12)

In this appendix, we verify that the multipole cxpan-
sion (3.12) is valid not only throughout the two half-
spaces z > R and z > — R [where the angular spectrum
expansion (3. 5) convergesg,but is, in fact, valid through-
out the exterior,» > R, of the source region.

As mentioned in Sec, 3, the field y/(r) can be represen-
ted in the form of an angular speectrum of plane waves
outside any strip bounded by two parallel planes tangen-
tial to the sphere of radius R, which surrounds the
source. For example, if we choose a new Cartesian
coordinate system of axes OX, 0Y, OZ, obtained from
the original system OX,0Y,0Z,by a rotation about the
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origin O, we can represent the field at all points outside
the strip |z | <R in the form (3.5), where the polar
angles a, B of 8 and 6, ¢ of the field point r are referred
to the rotated (barred) rather than the original (unbarred)
system of axes. Consequently, all the analysis leading

to the multipole expansion (3.12) remains valid in the
rotated system.

Consider now a field point rj that lies outside the
source region (i.e., for which r, > R), but which is
situated within the str1p [Z] < R and let us choose the
rotated axes OX, OY,OZ in such a way that rg lies out-
side the strip |z| <R (see Fig.2). Then if ,,0,, ¢,
and »’,6’, ¢’ are the spherical polar coordinates of the
field point ro and of the integration point r’, respec-
tively, referred to the rofated system of axes, we have
by (3.12)

o l
tP(l'o) =k ZZ()) Z;l ‘l—lm hl(+) (kro) Ylm (50; ¢o); (C1)
where [if we also use (2.4)]

r=dm [, p) i, ()Y@, ') a3y (C2)
We can rewrite (C1) in the form

Vg =k 33 80 Gro) (47 [, aor'ote’) i, (or) 5

m==1

X Y] @, ) v (eo,¢o)). (C3)

Now, if v, 0,, ¢ and 7/,0’, ¢’ are the spherical polar
coordinates of the field point r, and the integration
point r’, respectively, referred to the original system of
axes we have, from the addition theorem on spherical
harmonics (Ref. 37, pp. 290-291)

l

m§ Y@, 80T B b) = 2 YPTO, 900, 90,
(c4)

each of these two sums being equal to (2! + 1) P,(cosy)/47.
Here P, is the Legendre polynomial of degree /,and x is
the angle between the position vectors r, and r’. Making
use of (C4), Eq. (C3) can be rewritten in the form

Yiry) =k é}) r$ (kr ) <41r S p @70 (")
l

x 2 Y0, ¢) T 6o, ¢O)>, (©5)

FIG. 2. Notation relating to the proof that the multipole expansion

(3. 12) is valid throughout the exterior » > R of the source region. The
point ry is situated in the strip | 2| <R (referred to the original coordi-
nate system) but outside the strip | Z| <R (referred to the rotated system).
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or o 4

Yiry) =k IE

=0 m=~

with [if use is also made of (2.4)]

: almh(;)(k"o)yf" (60, 90), (Co)

al’ =4a [,__ o) AT*(x')d3r, (e1)

Equations (C6) is seen to be precisely Eq.(3.12) evalua-
ted at the point rj, and referred to the original system
of axes and Eq. (C7) is identical with Eq. (3.11). Since
r, can be taken to be any point outside the source
region, we conclude that (3,12) is valid at all points r
such that »> R,
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treatment of the quantized, free electromagnetic field has been given
by A. J. Devaney, Proceedings of the Third Rochester Conference on
Coherence and Quantum Optics, edited by L. Mandel and E. Wolf
(Plenum, New York, 1973), p. 241.

27If, in addition to oscillating charges and current densities, there is a
contribution from density of magnetization O (r, t) = ® (JN(r) e-iw?),
one must replace j(r) by j(r) + cv x M (r). The introduction of mag-
netization makes it possible to take into account the effect of spin in
the corrssponding quantum mechanical formulation.

BConversely, it is not difficult to show that the E and H fields that are
the solutions to Egs. (4.1) and which behave at infinity as outgoing
spherical waves satisfy the full set of Maxwell equations everywhere.

29The angular spectrum representation (4.2) may, of course, be
expressed in the vectorial generalization of the alternative form dis-
cussed in Footnote 21,

30Gee, for example, F. Rohrlich, Classical Charged Particles (Addison-
Wesley, Reading, Mass., 1963), Sec. 4.3.

3IE. L. Hill, Am. J. Phys. 22, 211 (1954).

32This fact may readily be deduced from the customary form of the
completeness theorem (discussed, for example, in Ref. 11, pp.
798-799), which may be stated as follows: An arbitrary, well-
behaved vector field A(r) may be expanded in terms of three types
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of vector spherical harmonics Xp, (8, ¢). Vim (8, ¢), and
Wi (8, ¢) in the form

!
Al =1§0 m?

LT O X1 (8,9) + 8™ (1) Vim 6, ¢)
+ 1M () Wi (6,8)],

where f7, g™, and k' are functions of the radial coordinate
r=1irl only. (The vector spherical harmonics X{p;, Vi, and

Wim correspond to Y71 11, Y7y 1+ 1,1, and Y7} ; | | respectively,
of Ref. 11.) The vector spherical harmonic Xpy, is, except for a
normalization factor, the same function that we denoted by Y;7;
more precisely

Y/m = (1 + D1 Xpp.

Moreover, one has the relations [see Eqgs. (B3) and (B9) of Ref. 31):

1
m= Bl _L\% vy, + (Hl) W, ]
sXYm=i[I(+ D] [(1+1) m e Im

1+1\ % 1\ "%
m: — —_——
sty [ (2“ 1) Vim+ <2H 1) Wlm] ,

where s = r/r is the unit vector in the radial direction. Since, according
to these relations, the vector spherical harmonics Y7, s x Y;M, and

s Y™ are linearly independent combinations of Xp, Vi, and Wi, it
is clear that they too form a complete basis for the expansion of A(r).
Moreover, Y/ and s x Y; are tangential to the unit sphere (s = 1)
and s Y is perpendicular to it. Hence, the two types of vector
spherical harmonics Y;" and s x Y;” form a complete set for arbitrary
“tangential vector fields” A(r), i.e., an arbitrary, well-behaved, vector
field A(r) such that s - A(r) =0, may be expanded in terms of them.

and
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3By making use of elementary vector identities and the fact that
s - Y™ =0, one can rewrite (4.12a) in the form

4

i 1 4 T
al’”=—l—(%)— (£> f ds [ dasina {sx [sxJ (ks)]}
0
[sx Y (@,8)]. (4.122)

Now, —k x [k x j (k)]/1 k1 is the Fourier transform jz (k) of the trans-
verse part jp(r) of the current distribution [cf., E. A. Power, Introductory
Quantum Electrodynamics (American Elsevier, New York, 1964), Sec.
6.3]. Thus, (4.12a’) and (4.12b) show that all multipole moments, (and,
consequently, the field outside the source region), depend only on those
Fourier componentsJ7(k) of the transverse part of the current distri-
bution for which k| =k = w/ec.

*For a discussion of the various aspects of the Debye representation see,
for example, the papers by Bouwkamp and Casimir!? , Nisbet'?, and
Wilcox!4, . R

*The decomposition (5.3) of the spectral amplitudes E(s) and H(s), which
we obtained as a consequence of the completeness of the vector spheri-
cal harmonics Y;” (a,8) and s x Y;™ (a,B) with respect to all well
behaved fields F (s) that are orthogonal to s [i.e., such that s - F(s) = 0],
may also be obtained as a direct consequence of the so-called Hodge’s
decomposition theorem (See, for example, P. Bidal and G. de Rham,
Commun. Math. Hel. 19, 1 (1946).] Wilcox'* employed this theorem
in his treatment of the Debye representation, which, however, is quite
different from ours.

3¢This identity follows from a well known general expression for vector
spherical harmonics in terms of ordinary spherical harmonics. [ See,
for example, Eq. (1.5), p. 797 in Ref. 11.]

*See, for example, B. W. Shore and D. H. Menzel, Principles of Atomic
Spectra (Wiley, New York, 1968), pp. 290-91.
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We give a new proof of the theorem stating that in a quantum field theory with tempered field
operators the dense domain of the polynomial algebra of these field operators applied to the vacuum
state contains a dense invariant set of analytic vectors for the representation of the Poincaré group.

INTRODUCTION

Analytic vectors for the unitary representation U(®)
of the Poincaré group @ in axiomatic quantum field
theory have been discussed earlier by one of usl. In
this note we use a different type of argument to give a
new demonstration that the domain D, constructed out
of the polynomials in the fields smeared with test
functions from &7, S(R4”) applied to the vacuum state,
contains a dense invariant set of analytic vectors for
U(®). We end with some remarks on the integrability
of symmetry Lie algebras in quantum field theory.

ANALYTIC VECTQRS FOR THE REPRESENTATION
OF THE POINCARE GROUP

The axioms for a Wightman field theory of a spinless
field are reproduced in.2 In our considerations we do
not make use of the locality property of the field or of
the spectral condition for P#, the generators of trans-
lations. It will also be sufficient to have one, not neces-
sarily unique, cyclic vacuum .

Theovem 1: Given a Wightman field theory with a
finite number of tempered fields transforming covar-
iantly among themselves under the unitary representa-
tion U(®?) of the Poincaré group &} = T4 ® SL(2,C).
Then the dense domain D, generated by the polynomial
algebra over the fields smeared with test functions from
®2.o 8 (R%") applied to the vacuum state €, contains a
dense invariant domain of analytic vectors for U(®}).

We shall give the proof of this theorem only for a single
scalar field. The generalization to fields with spin is
straightforward since the matrix elements of the SL(2,C)
representations transforming the field components are
polynomials in the real and imaginary parts of the
matrix elements of SL(2, C).

Let ¢(x,...,x,) € 8(R%"), where x, is a four-vector.
A scalar field ¢ gives a map R4#) — 3, which is linear
and continuous,
S(R%7) 3 ¢ = ¢"(¢)Q € K,
where JC is the Hilbert space.
For a given ¢ € $(R%%?) we define a map ®} — $(R47) by

®1 5(A,a) = @, , € S(RI%),
where

P, afXp--X,)=@(Ax; +a,...,Ax, + a).
Composition gives

(A, @) = @ 0= 0@, )® = UWA, @) 1)p ()22
We shall show that if

n
P(xq,.0.,%,)=P(xy,...,x,) exp(— 5 25 x2)
1
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with P a polynomial in the components of x,, and

x2 = x92 + x7, this composite map is real-analytic from
®,; to 3C. Then, since (A, a) = (A, a)"1 is an analytic"
homeomorphism, ¢*(®)Q is an analytic vector for U(®}).
(The set of functions described above is denoted {cp}.)

We start from arbitrary complex transformations
(A, a): x* = Abx¥ + a¥ where the 20 complex numbers
(A%, @) are denoted by z = (2,,...,2,4) € C20. We then
define functions f on R47 X C%O:

fAx,2) = PAx, +a,...,Ax, + a)e N(x.2)
1 n

N(x,2) = %f} (Ax, + a)2.
1

In fact, we shall study a more general f of the form
Q(x, z)e~N(x.2) where Q(x, z) is a polynomial. For every
fixed x € R4%, such an f is evidently holomorphic in G20,

Lemma 1: There is an open set V C C20 guch that
V O @} and f(., 2) is holomorphic from V to §(R47),

Proof: Define a subset of C20:V = {(A, a); a € C4,
A such that the quadratic form Re(Ax)2 > 0}. Since the
condition for positive definiteness is given by inequali-
ties related to the matrix ReATA — T denotes trans-
position — V is obviously an open subset of G290, As
every real nonsingular linear transformation takes a
pos. def. form into a pos. def. form, we have in particular
that Vv O @}.

Now, for every compact subset V_ of V we can find
positive numbers X and n such that

n

le-Ne. o < ke "F*2, xeRi",  z eV,

Evidently f(., 2) € 8§(R4*) for every z € V and it remains
to show that the map V = z = f(., z) € §(R4") is holo-
morphic. This amounts to showing that the map is dif-
ferentiable [in the topology of 8(R4%)],i.e., that for every
seminorm p in a set defining the topology of S(R47) we
can, given € > 0, find a 6 > 0 such that

20 4
p(f(.,z +o0) =, -2 2L Azi>< el az|
provided |Az| = (Z1az,]2)1/2 < 5,

The set of (semi-) norms on $(R4*) is taken as {p_ ,}
with

Po,s(f) = sup lx=DBf(x)]
with an obvious multi-index notation.

Now we can write
20 of
f('yz + AZ)—f(-,Z)—Z} ’a_z— AZ,;

1 i

_ R (e of
= fo ZI) (-a—z— (.,2 + mz)~—a: (.,z)> Az dt.

1
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Provided z + #Az, t € [o, 1], stays inside a compact V,
as above, the effect of the suppressing factor e N(¥.2)
is that the term inside () under the integral sign can
be made small, uniformly in x, by choosing | Az| small
enough, for any given fixed z € V. Hence we get

20 Bf
po.o(flz 4 82—, -2 2L a2,) <elaz|
1 i
for |Az] small.

For a general norm p, g we can write p, g(/f) =
Po,0x*DEf).

Since x and z are independent arguments, we get

20

bue (Ml 4 a0 =0 -2 Y o)

2,

20 ag
= o0 (2 + 29 —s(,2) -2 2 az)),
1 0z

where g(x, 2) = x*D8f(x, 2). g is of the same type as f
so the same argument as above applies. Thus f{., z) is
holomorphic from V to §(R4#).

Pyoof of Theorem 1: Since the map ¢* from
$(R47) to Jis linear and continuous it follows from
Lemma 1 that the composite map

V 3(A,a) > $5(@(p )@ € I

is holomorphic. Since @, (the complex Poincaré group
with determinant | Al = + 1) is an analytic submanifold
of C20, restriction of the above map to V N &, gives
again a holomorphic map. Now, V N @, is evidently an
open subset of @,, containing ®}, so that restriction to
@} gives a real-analytic map. Since the set of
functions {¢} contains the Hermite functions in 4n
dimensions it is obviously dense in §(R4#). By taking
the polynomial algebra over the field, smeared with
test functions in {go} for all n, we get a dense domain of
Poincare analytic vectors contained in D,. By further
taking all U(®})~translates of the vectors in the domain
so constructed, we get the dense invariant domain of
analytic vectors of Theorem 1.
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REMARKS ON INTEGRABILITY OF SYMMETRY LIE
ALGEBRAS

Regarding the local aspect of analytic vectors for the
Poincaré algebra in connection with the integrability
discussed in Ref. 1 we want to emphasize that in a field
theory the integrability is often most simply shown by
means of the extension3 of a theorem by Segal4 on the
unitary implementability of groups of *-automorphisms
of C*-algebras to the case of unbounded operator
algebras in field theory, usually called the “reconstruc-
tion theorem.” From this theorem one can deduce, that
any Lie algebra representation in X acting as a deri-
vation in the set of field operators, is integrable if

(a) the generators annihilate the vacuum state @, and
(b) the action of the Lie algebra on the algebra of test
functions (which induces the given Lie algebra repre-
sentation in 3) can be integrated to a differentiable
group of *—automorphisms of the algebra of test
functions.

For representations of the Poincaré algebra by
symmetric operators in JC satisfying the condition (a)
and transforming a finite number of fields among them-
selves, the condition (b) is always fulfilled.

In the case of internal symmetry algebras, the alge-
bra of test functions can be taken as the tensor algebra
generated by §(R4) ® L, where L is the index space and
&(R%) is the covariant test function space. In this case
the condition (b) is equivalent to requiring the repre-
sentation in L to be integrable.
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The Regge pole spectrum of the ABFST multiperipheral model with a resonance kernel is studied,
using both the forward and nonforward partial-wave integral equations. Insight into the complicated
pattern of the trajectory spectrum is provided by an analysis of the singularity structure of the basic
kernel using appropriate representations for it, and by an elucidation of the process of generation of
trajectories in the weak-coupling limit. This also establishes a framework for understanding the
characteristics of the approximate solutions to the problem that are taken up subsequently. The trace
approximations for both the nonforward and forward equations are worked out in detail. The traces
involved are evaluated in convenient closed forms from which all the necessary information can be
extracted easily. It is found that the approximation preserves, to a fair degree of accuracy, the
trajectory-generating singularity structures of the relevant kernels, and that good ‘effective’ trajectory
positions for the leading and secondary poles are obtained in both the forward and nonforward cases.

It is aiso shown that, in this approximation, other phenomena such as complex Regge poles, the
threshold behavior of the trajectories, and the intercept and slope of the leading trajectory can be
investigated in a close simulation of the actual situation. Recent factorizable approximations are then
examined from the point of view of the pole spectra they lead to, and it is concluded that, by and
large, they oversimplify the problem and that their shortcomings are thus more extensive than those

of the trace approximation.

1. INTRODUCTION

There are very few relativistic models for which
complex angular momentum analysis can be carried
out, because of the enormous technical complications
involved in a program of this sort. Yet, because of the
importance of such studies in high-energy hadron
physics, the few tractable models that exist have been
the center of a great deal of attention, even if they do
neglect complications arising due to spin and other
quantum numbers. (Apart from the usual claim that
these factors can, in principle, be included without
much trouble, it is of course essential to be able to
handle at least the simplified cases in the first in-
stance. ) In particular, the Amati—Bertocchi—Fubini—
Stanghellini—Tonin' (ABFST) and later, more general-
ized® multiperipheral models3 have been investigated in
many papers in connection with high-energy behavior
and continuation to complex angular momentum, In-
terest in a multiperipheral model like that of ABFST
derives from its relevance in describing such features
of high-energy scattering as Regge behavior for elastic
amplitudes and total cross sections, scaling, and
logarithmic growth of the multiplicity in multiparticle
production reactions, to mention just a few. From a
theoretical viewpoint, too, the ABFST model has as one
of its important uses the “underpinning” of the assump-
tions involved in multi-Regge bootstraps on which
modern dynamical calculations on the origin of the
Pomeron and other trajectories are based.*® The model
is thus of basic importance.®” It is further capable of
accommodating refinements and modifications®=2 that
make it more complete from theoretical considerations
and improve its description of the experimental situa-
tion. The question of its Regge trajectory content is
therefore a pertinent one and is worthy of analytical
study in its own right, given the fundamental nature of
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this type of model for strong interactions at very high
energies.

A formalism that has proved most useful when used
in conjunction with multiperipheral models is that of
the Bethe—Salpeter (BS) equation. For instance, in the
multi-Regge bootstraps referred to above, much use has
been made of the BS framework with Regge exchange
incorporated into it.® The formalism is also of con-
siderable aid in the “diagonalization” of the multiperi-
pheral model-based integral equation for absorptive
parts of scattering amplitudes®; this is an essential step
in the general program of carrying out the crossed-
channel partial-wave analysis necessary to express the
high-energy properties of physical scattering ampli-
tudes in terms of singularities in the partial-wave pa-
rameter plane, taking into account the appropriate little
group of the momentum -transfer vector in various
kinematic regions. Now it has been found possible to
derive “partial -wave” integral equations!® for the ab-
sorptive part of the scattering amplitude in the ABFST
model in both the forward (¢=0) and nonforward (¢+0)
cases, that are, with the usual assumption of a
“resonance” kernel, rather similar in form to the
Bethe —Salpeter equations satisfied by the partial-wave
projections at =0 and £#0 of the scattering amplitude
in the scalar g¢Z¢, field theory in the ladder approxi-
mation. The particular problem of deducing the trajec-
tory spectrum in each of these instances is, formally,
a common one. Discussions of some of the Regge tra-
jectories of the ABFST model have been given in vari-
ous approximations such as “factorizable” approxi-
mations®!+*? (for general {) and the “trace” or “first
Fredholm” approximation (at ¢=0),%!* for example, in
connection with the occurrence of complex Regge
poles,!* It will be recalled that more detailed work on
the trajectory-spectrum aspect of the problem (beyond
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the level of the leading Regge pole) has been done, but
in a rather different context—essentially in the weak-
coupling limit of the field-theoretic example referred
to earlier. These investigations have been made both in
perturbation theory, !* usually using Mellin-transformed
Feynman amplitudes, '® and directly from the BS equation
for the partial-wave amplitude.'” However, even here,
explicit analytic continuation into the left-half partial-
wave plane!® (or Mellin parameter plane) to isolate
Regge poles has been performed®s:**=2 only for a few
of the higher-lying trajectories, because of the rapidly
multiplying technical complications at each stage of the
(stripwise) continuation procedure. It is rather unclear
from such considerations, as also from those involving
the trace or factorizable approximations, exactly what
the trajectory spectrum of the original problem is. We
take the attitude that this is an important question, and
that it is worth trying to clarify the manner of genera-
tion of Regge poles in the ABFST model. A second as-
pect worth examining is the extent to which the trace
and factorizable approximations preserve the actual
trajectory structure (insofar as the latter can be re-
liably deduced). These two broad objectives form the
main content of the present paper. We shall find, first,
that a careful consideration of the singularity structure
of the kernel of the relevant integral equation in the
angular momentum plane yields a good deal of informa-
tion on the process of generation of the Regge trajec-
tories, and second, that the trace approximation can be
analyzed in depth (both at /=0 and ¢#0) and is in fact a
rather good approximation as compared to the various
factorizable approximations. Although we shall be con-
cerned with the (physically interesting) ABFST model,
we shall often use (for convenience) the language of the
field~theoretic model in the BS formalism.

The basic partial-wave equations in both the t=0 and
t#0 cases, from which the trajectory spectrum is to be
deduced, are linear integral equations with nondegen-
erate kernels. Essentially because of the nondegeneracy
of the kernels, the problem of determining the full tra-
jectory spectrum remains unsolved, This is so even in
the simplified case of the weak-coupling limit men-
tioned above. (Indeed, only in the special case of the
Wick —Cutkosky model, ?* where the mass of the ex-
changed scalar meson is zero, has the full singularity
structure in the partial-wave plane been elucidated. %)
We shall use the known, exact results in the weak-
coupling limit to examine the accuracy of the trajectory
structures found in various approximation to the ABFST
equations. We shall also occasionally use the Wick—
Cutkosky example for the same purpose, although of
course this case certainly does not apply in a literal
sense to the ABFST model, where the exchanged
(resonance) mass is generally taken to be large com-~
pared to that of the scattering particles. As we shall
see, there are basic qualitative differences between
the trajectory sequences in the massless~scalar and
massive-scalar exchange cases; however, the former
will serve as a check on some results when the appro-
-priate limit is taken, since several exact results are
known here.

The organization of this paper is as follows: Sec. 2 is

J. Math, Phys., Voi. 15, No. 2, February 1974

248

devoted to writing down the integral equations con-
cerned, intrcducing notation, etc. In Sec. 3, we dis-
cuss the trajectory spectrum in the weak-coupling limit
both for £=0 and £#0. (A method of extracting the posi-
tions of the Regge poles at =0 is also incidentally in-
dicated, that is much simpler than any of the earlier
methods. ) Part of this discussion will be a quick sum-~
mary of known results, as its purpose is merely to
provide a means for understanding the origin of the
singularities in the partial-wave plane. Attention is then
paid to the form of the kernel in order to point out
precisely how the trajectories are generated, for the
reasons given earlier. In Sec. 4, we give a full dis-
cussion of the eigenvalue problem in the trace approxi-
mation. First we consider the weak-coupling limit in
this case (for the sake of the comparison referred to
above), and then the physically interesting questions of
threshold behavior, complex poles, and Pomeron inter -
cept and slope. Finally we re-examine the trace ap-
proximation for the forward equation, Although this has
been considered in earlier papers,’:'* the integral rep-
resenting the trace of the kernel has been evaluated
only approximately. We show that this integral can be
evaluated exactly and that the eigenvalue condition for
the pole positions can be cast into a simple closed
form, from which results such as the occurrence of
complex Regge poles can be easily read off. In Sec. 5,
we briefly look at various factorizable approximations
from the point of view indicated above in order to get an
idea of the reliability of the corresponding trajectory
spectra. We close with some general concluding re-
marks. (Other such remarks on specific points are
made at the appropriate places in the text itself.) The
emphasis throughout will be on analytic aspects, ade-
quate numerical analyses®®?® having been carried out
already.

2. THE EIGENVALUE EQUATIONS

The direct (s-) channel absorptive part of the off~-shell
(7-7) scattering amplitude in the ABFST model satisfies
a linear inhomogeneous equation rather similar to an
integral equation in each of the cases t=0 (forward
scattering) and £#0. A lot of work has been done in
recent years on the “partial-wave” analysis of the equa~
tions in the two cases and in diagonalizing® the equations
in the partial-wave parameters (i.e., in deriving the
integral equations satisfied by each decoupled partial~-
wave projection). All these equations are neatly sum-
marized in Ref, 11, Here we shall merely quote the
relevant equations.

Let us first consider the general case, 0, With
kinematics as in Ref. 11, we have ingoing momenta
P+Q/2, k-@/2, and outgoing momenta P-Q/2, k
+Q/2 in the s channel, so that s=(P+k)?, t=@*/4. The
t-channel relative momenta squared are denoted by
u=PF?, v=F, and held negative. The angles ¥, ¢ are
defined by siny=(P- @)/ tu)*/?, sing = (k- Q)/(tv}*/2,
The two-pion contribution to the s-channel absorptive
part is approximated by a single resonance of mass M,
with “strength” g2 Then a partial-wave projection A,
of this absorptive part may be defined, which satisfies
the linear integral equation
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A (tsu, §;9,9)

—125—2— [(uv) /2 cosy cose -+

B(3,1+1)

% QI<M2 —y = =2(uv)/? sinzpsian)
2(uv)' /2 cosy cos

_szo I.['Iz A1/2 AN RS
+ du A (4w cosy
167 J. ez W [( ) (cosw>:|

u

« <Jl42 -~ —2(uu’) /2 siny sinzp’)
Q 2(uu’) 2 cosy cosy’

X[(m? = t/4 = w)? ~u'tsin®P' | A (L, 50, 9),
(2.1)

where #’, ¥’ are defined in terms of intermediate state
momenta (P’ + Q/2) analogous to «, ¢. [ is the partial-
wave parameter. The Regge trajectories of the model
are to be found from the zeros of the Fredholm de-
nominator D(l, {) of the kernel in Eq. (2.1). Aside from
some changes of variables, the equation satisfied by

A, is similar to the Bethe—Salpeter equation for the
partial-wave amplitude in the g¢i¢, theory in the ladder
approximation, For a consideration of the trajectory
spectrum, we are concerned with the homogeneous in-
tegral equation. Let us write this down in the BS for-
malism. Let m, M denote, respectively, the masses of
the scattering and exchanged particles, and g the cou-
pling constant at the m-M-m vertex. Then, after the
usual Wick rotation has been carried out and we go over
to Euclidean momenta, the off-shell, homogeneous, ¢-
channel partial-wave BS equation in the ¢c.m. system
reads!’ '

oo, )=g2@n [ ap f do
[ .o

2 2 — )2
xq, (Pl 9P) 41, 0,08 (5, 0.

(2.2)

pl=ipl) and w refer, respectively, to the relative
momentum and energy variables. f(p, w, t) is the pro-
duct of the propagators for the two internal lines on the
sides of the ladder, and is given by

(D, w, ) =[(p?+ w® +m® = 14 + t?]. (2.3)

We shall work with the convenient notation of Eq. (2.2)
in our consideration of the Regge trajectories of the
ABFST model.

We now turn to the case when t=0. At this point,
AP, w, t) becomes a function of the combination p? + w?,
and the well-known O(4) symmetry of the (Wick-rotated)
BS equation can be used to further simplify the eigen-
value equation (2.2).% What is needed is an expansion
of the @, function in this equation in terms of hyper-~
spherical functions. ?” As we shall need this expansion
when we consider the process of generation of trajec-
tories, we write it down here. In terms of the variables
u=p*+o’, E=w/u’? and p=(u+u’ +M°)/20uun') /%,
we have

Q (M2 +p2+p%+ (w —w')z)
1 2ppl
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Q (M2 tutuw -2(uu')1’2c;'>
13 Zqu'(l — {2)(1 _ g;z)]i 72

=B(‘§‘, 1+ 1)[(1 - )1 - glz)](“l)/g
X ,,Z.:o nB(n, 21+ 2)}“"([’)0;41(E)C:u(g,),
(2.4)

where Cl*'(¢) is the standard Gegenbauer polynomial
and 7,,.(p) is the corresponding function of the second
kind, given by

Frnlp)= [p+(p?=1)]+n1,

If we also expand the eigenfunction ¢ ,(x, £) in Eq. (2.2)
in terms of four-dimensional harmonics, then, exactly
at =0, the equation decouples to give a one-dimen-
sional integral equation; this reads

(2.5)

2 w
2=y [ ww T, @0
where G®=g?/167% and we have put I +n=0 since the
kernel depends on this combination alone. (Any state-
ment on the spectrum at {=0 as a function of the “four-
dimensional angular momentum®” ¢ may now be translat-
ed into one in the ! plane simply by using =0 -, %)

Turning to the ABFST model in the case of forward
scattering, let #, v denote the four-momenta squared
of the two off-shell pions in the s-channel (%, v are
held negative). Then a partial ~wave projection A, of the
s-adsorptive part of the amplitude can be defined in
such a manner that it satisfies the equation

A(u,v) =L (u,v) + f_i du’A,(u, u K, (u’, v). (2.7)
Here I, is the inhomogeneous term, and the kernel K,
is given by

K (u',v)=(+1)" 4:?' ds(u’ —m?)2C(s)/(p), (2.8)
with p=(s —u’ —v)/2(x'v)* /2. C,(s) is related to the two-
pion unitarity contribution (it is proportional to the =7
elastic cross section). We have ignored isospin here for
simplicity. If, as in the ¢+#0 equation, we take into ac-
count only a resonance contribution by replacing C,(s)
with G25(s — M?), we arrive at an eigenvalue equation®!
for the trajectories at ¢=0 that is essentially Eq. (2.6),
with A taking the place of 0. As in the nonforward case,
we shall work with the (BS) notation of Eq. (2.6) in our
discussion of the trajectory spectrum.

3. TRAJECTORY STRUCTURE IN THE WEAK-
COUPLING LIMIT

The Regge trajectories of the model are found by
solving the eigenvalue condition obtained from the homo-
geneous integral equations (2.2) and (2. 6) for the ap-
propriate partial -wave parameter in terms of the other
quantities, namely, ¢, G, m?, and M2, As stated in the
Introduction, we shall now briefly consider the weak-
coupling limit, i.e., we shall work to () (G?) in the tra-
jectory functions, in order to facilitate comparison with
the results of subsequent approximate solutions to the
problem.
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A.t + 0 case

The relevant eigenvalue equation is Eq. (2.2). We
expect Regge poles to be generated from the fixed poles
of the kernel at I=-1,-2,+++ as the coupling is turned
on, but initially we are restricted to the region Rel
> -~ 3/2, which is the region of square integrability of
the kernel (except for the point I=-1). It is well
known that in this region there is just one Regge pole
for sufficiently small G®. Since the residue of @, at
I= -1 is unity, the position of this leading pole to () (G?)
is easily seen to be given by

l+1=g2(2ﬂ)'3ﬁndp£:dwf(p, W, t)

=4G*(dm? - ) Fl3, 1,3t /(¢ = 4m?)]. (3.1)

M? enters only in the higher order terms in G2,

Now let us consider the secondary trajectories. In
the expansion?®®

aZ0t2rad) ooy

Quz)=V7 rZ=>0 (22) % T(l+7+3)!

(3.2)
it is the term with =0 that has a pole at =-2. Before
we can isolate the Regge poles expected near /=-2 in
the weak-coupling limit, however, analytic continuation
(of the original inhomogeneous equation) to that neigh-
borhood must be performed, because the term ~z-!!

in Q (2) leads to divergences of the original representa-
tion before we can reach /= -2 both for p’~0 and p’, v’
— o, After this problem is taken care of,*? one finds
three Regge poles near I= -2 in the weak~coupling
limit, one of which is the daughter of the leading Regge
pole. Further stripwise analytic continuation to the
neighborhood of /= -3 (now the =0, 1 terins have to
be handled properly) gives five Regge poles in that
neighborhood, three of these being daughters of those
near /=-2.

While we can, in principle, proceed to isolate all the
secondary trajectories of the model by such stripwise
continuation using the expansion of Eq. (3.2), in prac-
tice the procedure rapidly becomes too complicated to
be tractable beyond =~ 3..Up to this point the multi-
plicity of Regge poles is indeed the same as that in the
M =0 case. In the latter model, the eigenvalue equation
may be reduced to a second order ordinary differential
equation, %° and it turns out® that there are (2N - 1)
Regge poles near /= - N in the weak-coupling limit. Be-
yond I=-3, the M +#0 problem departs considerably
from the pattern of the M =0 case. * No “one-step” con-
tinuation procedure has been found so far when M is
nonzero. Therefore, although we may look upon the
Regge poles of the model as being generated from the
poles of @, at I=~ N, the problem of explicit isolation
of the Regge poles is nontrivial, and indeed the exact
multiplicity of Regge poles near =~ N in the weak-
coupling limit is unknown for general N.

Still, we car make some useful statements on the tra-
jectory spectrum in the weak-coupling limit for the case
of interest to us. It is already known that for the kernel
we are concerned with in this paper, the only singulari-
ties in the ! plane are (Regge) poles,!® and the some-
what simpler =0 case makes it possible to put rough
upper® and lower® bounds on the number of Regge poles
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present in the model. We proceed to make some more
definite statements: while we cannot directly substitute
for Q,(z) the singular but degenerate (finite-ranked)
kernel Py_,(2) /(1 +N) to solve the problem in the weak-
coupling limit because of the divergence problem, the
exact number of Regge poles generated by each (fixed)
pole of @, must be related to the number of linearly
independent vectors in the (p, w) function space that can
be constructed from a suitable “continuable” form of the
residue Py, at that pole. An example is needed to
clarify the point: For N=2, the residue of @,(2) is
simply z=[M?+p? + p" + (0 = )21 /2pp’, which, how-
ever, is not square-integrable; but an inspection of the
expansion for Q,(z), keeping in mind the divergence
problem, shows that we must use 27! /(I +2), rather
than just z /(1 +2), as the effective kernel in this in-
stance. We can then proceed to show?® that a suitable
“continuable” form for @,(z) near != -2 in the weak-
coupling approximation is the rank-three kernel

[‘P;(P, W),(p7, W) +@,(p, w)‘p1(1"1 w') ~@4(p, w)
X@4(p', w)/(1+2), where the ¢’s are (I-dependent)
functions given by

¢1 - (ﬁp)hl’
(pg=(p/w)“1-

The resolvent of this kernel can be easily evaluated ex-
plicitly and fken analytically continued to the neighbor-
hood of I= -2, Putting /= -2 everywhere except in the
explicit pole factors (I +2)-! will then lead to the three
Regge poles referred to above. For a general value of
N, an examination of Eq. (3.2) shows that the pole of Q,
at /=—N comes from such a pole in each of the first
[(N=1)/2] terms of the expansion. If we extract this
pole part without altering the 1-dependent powers of z,
we find that the “residue” can be written in the surpris-
ingly simple form z-*"¥P,_ (z). (The factor z-}¥ is of
course what makes the kernel nonseparable.) It is this
last quantity that must be used as the effective residue
from which the appropriate separable kernel is con-
structed to extract Regge poles in the weak-coupling
limit, after analytic continuation in ! of the resolvent of
this kernel. Further discussion of the process of gen-
eration of trajectories is given in Sec. 3C, using the
expansion of Eq. (2.4) for the @, function.

@, =[Vep /(M2 /2 + p? + W2 |1+,

B.t =0 case

The relevant eigenvalue equation is Eq. (2.6). It is
trivial to see that in the weak-coupling limit the leading
Regge pole is at

=—1+Gaj;)°°du/(u+m2)z=—1 +G?/m?,

which is consistent with Eq. (3.1), Before we can iso-
late secondary trajectories, we have again to handle a
problem of analytic continuation, the kernel in Eq. (2.6)
being square -integrable only in the region Reo> - 2.
While no poles at 0=-~2, -3, +++ appear explicitly in the
kernel of Eq. (2.6), unlike the case of the @, function in
the kernel of the nonforward equation, such poles could
(and do) appear once we carry out the necessary analytic
continuation in o.

The eigenvalue equation (2. 6) has been the subject of a
number of investigations, * but, as in the ##0 case, one
is forced to adopt a stripwise continuation procedure in
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the o plane, and the exact multiplicity of trajectories is
not known even in the weak-coupling limit. As stated
earlier, the only exception is in the special case M =0,
The function 7 (p) in the kernel then reduces to the
quasiseparable form

O(u —u’)u! fu) /2 + 0w’ -u)(u/u’)“’*”/z, (3.3)

and the equation can be exactly solved. In the weak-
coupling limit, there is one pole near o=~1, given by
0+1=G?/m?; and two poles near o=~-N (N=2), given
by ¢+ N=4+G?/m?. The corresponding statements in the
1 plane follow trivially. We state these exact results
here because we shall subsequently check the corre-
sponding results of the trace and various factorizable
approximations against them.

In view of the importance of being able to make some
exact statements at least in the case of forward scatter-
ing, it is worth studying the eigenvalue equation (2.6) in
some detail. Here we shall mention very briefly some
results in this direction, and indicate a new method of
extracting weak coupling results with very little effort.*
From the known singularity structure of the kernel 7,
in u and #’, we can analytically continue the eigenfunc-
tion ¢(u) off the real positive axis in », and find its
singularities. We find that the function & (u)
= ¢(u)u~ @1’ /2 has branch points at — (nM)?, where
n=1,2,++<,% A study® of the corresponding configura-
tion space problem, showing how the “wavefunction”
behaves near the origin, indicates that, at least jup to
o=~ 3, the singularity of &(u) at u =< is not relevant
in the weak-coupling limit. This immediately leads us
to compactify the region of integration by changing
variables to v=M?/(M? +u), v' =M?/(M? +u’). Denoting
the new eigenfunction divided by v°** by & once again,
we get from Eq. (2.6)

3(v)=(6*/M)2° (o + 1) [ dv'[1+(a-1o']?
XH (v, v")®(v),
where a=m2/M? and
H(v,v")=[v'(1 =0 v +v' =00’ +{(v + v =vv')?
=49 (1~ v)(1 = v )} /2]eL, (3.4Db)

Neglecting the singularities of ®(v’) at v’=0and 1, the
right-hand side of Eq. (3.4a) can be analytically con-
tinued to the left of Reo= -2 by converting the v’-in-
tegration to one over the contour (1 —,0+) encircling the
branch points of H, at v/ =0 and v’ =1, and multiplying
the contour integral by the factor exp(ino)/(2{ sinro).
The weak-coupling expressions for the trajectories near
o=-2 or 0=-3 are then obtained by substituting these
values of o everywhere except in the pole factor coming
from 1/(sinmg), the resulting integrals reducing to
trivial evaluation of residues. In this simple manner

we recover the known expressions for the two trajec-
tories near each of the points c=~2 and 0=-3,
namely,

(0+2) +G*(0+2)M? /m* = G* /m* =0,

(3.4a)

(0 +3)2 = G*(0 + 3)M*(M? - 2m?) /m*®
+GHM* + 2m>M? = m*) /m® =0,

(3.5)

Equations (3.5), especially the second one, are ar-
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rived at only after a great deal of algebra by any other
method. %2

Beyond 0= -3, the above method has first to be
modified because the singularities of (v) at v=0and 1
also begin to play a role even in the weak-coupling lim-
it, and the procedure becomes more complicated. *
However, such a contour integral method, taking into
account the relevant singularities of the eigenfunction,
seems to be the best approach to an algebraically very
complicated problem for a general value of N. In any
case, the procedure makes it clear that the behavior of
the kernel at the boundary points v=0 (p? + w® -~ «©) and
v=1 (p,w=0) is crucial in deciding the trajectory
spectrum of the model. Any approximation that alters
this behavior (even if it does so in only one of the sets
of variables p,w and p’, w’) would cause modifications
not only in the positions of the Regge poles but also in
their multiplicity.

C. Structure of the kernel

We now consider the kernel of the nonforward equa-
tion, in order to make some further general remarks
regarding the process of generation of trajectories in
the model. Here we shall not be concerned with the
problem or analytic continuation discussed earlier.

To understand the spectrum, we have to go at least
as far as the larger symmetry of the forward equation.
We therefore consider the decomposition of Eq. (2.4).
The connection between the weak-coupling limit and the
poles of Q, at negative integral values of [ has already
been explained. Now the pole of @, at I=-N (N
=1,2,...) is displayed by the expansion of Eq. (2.4) as
follows?: writing the Gegenbauer polynomials in terms
of hypergeometric functions that are regular at I=-N,
one finds that the pole arises from a factor I'(2] +#n+2)
in the numerator of the summand. Thus the first (2N -1)
terms of the expansion become singular at /=~ N, while
the rest of the terms remain regular and their sum
converges as before. The ovigin of the number (2N —1)
of Regge poles near l=—~N in the M =0 case rests in
the above fact. To see how the corresponding residue
Py, is constructed, we note that the residue of the
infinite series at that point is a finite sum of terms
proportional to 7, y, With n running from 0 to 2N -2,
This sum may be split down the middle at the Nth term,
and terms symmetrically spaced about this point may
be combined by using the identity 7, ,=(7,)*, for any
@, The residue at I=~N is then a sum from »=0 to
r=N -1 of terms proportional to

Fgr ¥ (F )=l +(0* = 1) %) +{p - (p* - 1)),

so that the square-root factors cancel out, in order to
produce the required polynomial in z.

The term corresponding to n=N -1 (or »=0) plays
a special role: in this case we have 7, =1, and this
term is responsible for the sequence of Regge poles
with the leading Regge pole of the model as parent. The
degeneracy involved in this instance, i.e., the fact that
Fa={(F,)" (=1, independent of p), is the precise rea-
son why this term generates only a single Regge pole
(near each — N in the weak-coupling limit). We can also
see directly how the various trajectories near I=-1,
-2, -3, etc. are generated. At I=~1, only the n=0
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term of the sum is singular, At I=~2, the n=1 term
generates the daughter of the leading pole, while n=0
and n=2 generate two new trajectories. At I=-3, it
is the n=2 term that generates the pole belonging to
the leading sequence; n =1, 3 generate the daughters of
the two other poles near = -2, while n=0,4 give two
new trajectories, and so on. Beyond [= -3, the com~-
ments made earlier suggest the possibility, when M#0,
of more than one Regge pole being generated by a single
value of the index n; the pattern of Regge poles then
departs from that in the case M =0, as already stated.

With the general discussion of this section, we now
have a perspective for understanding the nature and ex-
tent of the approximations in which the trajectory spec-
trum will be discussed in the following sections.

4. THE TRACE APPROXIMATION

Since the eigenvalue equations for the Regge trajec-
tories both for £=0 and £ #0 involve fairly complicated
kernels and are not amenable fo exact, analytic solution,
various approximate solutions have been suggested. Of
these, the trace or first Fredholm approximation (here-
after referred to as the TA) has been investigated for
the forward equation both analytically and numerically:
the agreement between numerical results of the TA and
the exact problem is quite a convincing argument for the
validity of the approximation and the “approximate fac-
torizability” of the kernel. This point has already been
discussed in several papers.”%* Qur purpose here is
to work out as fully as possible the trajectory spectrum
in the TA for both the ¢=0 and ## 0 equations, and to
explicitly calculate quantities of physical interest such
as the Pomeron slope in the model. It turns out that
once the basgic approximation is made, the rest of the
program can be carried out more or less exactly, and
we shall find that a large number of the features ex-
pected in the solution of the original problem are pre-
served in this approximation.

A. Trace approximation for the nonforward
equation

The TA for the eigenvalues of an integral operator
with kernel K consists in writing the Fredholm de-
nominator D(G?) in the truncated form 1 - G2Tr(K),
leaving out all the succeeding terms. Adopting this
procedure for the integral equation (2.2), the w de-
pendence of the @, function drops out when the trace is
taken, *” and the eigenvalue condition may be written,
after doing the integration over w, as

G* .

g —L 2 _t_ * 2 “1/2 _
1- 2 deQl<1+2x2)(x +a—4M2> (@ +a)t/2=0

(4.1)

(a=m?/M?). The Regge trajectories are the solutions of
this implicit equation for I. For ¢#0 (we may keep it
‘negative), and a+#0 (physically, we are interested in
small positive values of @), the integral in Eq. (4.1)
converges, as expected, in the region Rel> —3/2, %
Although we cannot directly evaluate it in a closed form,
a power series in ¢ is easily generated. Thus for |Z]

«< 4M?, Eq. (4.1) can be written as
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G & A% n!
I_an_o (-tﬂ/ﬂa—;) I(l’a)(z_nf-T)T:O’ (4.2)
where
I, a):f dx Q, <1 + 5%) (x® +a)®/2, (4.3)
o X

While we can proceed directly from Eqgs. (4.2) and
(4. 3), it is more convenient to use a representation for
the trace in Eq. (4.1) discovered by Nakanishi. * He
showed that this could be written in a form rather
closely analogous to the Feynman parametric expres-
sion for an on-shell vertex diagram: the second term in
Eq. (4.1) takes the form

1
, 8(1 = %, = x5 — x5 )2}
¢ fo dx, dx2dx3[(x1 + 2,01 = 20 )m? + x,M2 = x,x0,0]

(4.4)

Note the extra !/-dependent factor in the integrand. While
(4.4) is no easier to evaluate explicitly than is the in-
tegral in Eq. (4.1), it provides a very simple represen-
tation for I(I, a), which is, with the help of Eq. (4.2),
sufficient for our purpose. We find

Yo x(1-%)
I(l,a):L dxm (4.5a)
2 x}(1 -x)
_—_aljD dxm—é-_l—)' , (4.5b)
where
R=[1-(1-4a)}?]A1+ (1 -4a)*/2]. (4.6)

The right-hand side of Eq. (4.5a) will be recognized as
being quite similar to the Feynman parametric form for
a bubble or self-energy diagram (again with an extra I-
dependent factor in the integrand). It is worth giving
here a simple geometrical explanation for this: the dual
of the vertex diagram referred to above can be re-
oriented to have M? appear as the label of one of the ex-
ternal lines of another vertex diagram, with { as the
internal line opposite it. At £=0, the new dual diagram
collapses to that of a bubble diagram with M? labelling
the external line and m? the internal lines. This is why
the threshold like factor R appears naturally every-
where in the trace approximation. The form of Eq.

(4. 5b) will be very useful in our subsequent comparison
of the TA for the nonforward equation at {=0 with that
for the forward equation,

The integral appearing in Eq. (4. 5b) can in fact be
explicitly evaluated in terms of standard hypergeome-
tric functions. After some algebra, we find

I(l,a)=[(0+1)(1+2)]*[(1+R)/(1~R)]
x[R1F(1,1+1;1+3;—~R™Y) -~RF(1,1+1;1+3;-R)}],

4.7

a closed form from which various results can be
extracted.

B. Weak-coupling limit

Using a convenient power-series representation for
the hypergeometric functions in Eq. (4.7), we find that,
in the TA, there is just one Regge pole near each of the
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points {= =N (N =1) in the weak-coupling limit, In

terms of the quantity 6 = —~InR, we can write a compact
expression for the positions of the above Regge poles in
this limit, again as a power series in {. We find finally,

I+ N=(=14G*/m*} (M /m)(L +c,t++++)
X [sinh(N - $)8 /sinhé],

with ¢, = (1/4m?)[1 - (%)ad /2al, and the higher order
terms in f are generated by using Eq. (4.2). The weak-
coupling limit enables us to judge how the multiplicity
of Regge poles has been altered by the TA, If u, is the
actual number of Regge poles near I=~N in the weak -~
coupling limit, the Fredholm denominator in that limit
takes the form Zar[Gz/(l +N)F, with ay=1 and » running
from O to py. In the TA, however, the above sum is
truncated at =1, so that (for N> 2) the right-hand side
in Eq. (4.8) is simply the sum of the u, weak-coupling
limit solutions for (I + N).*° In the case t=0, we would
improve the situation regarding the multiplicity of
Regge poles by first going over to the forward equation
and then making the TA: we shall find a bit later that
this gives one pole near each point 6=~-N (N=>1), and
therefore N Regge poles near /=—N, Even this is quite
different from the actual number of Regge poles. How-
ever, we can say that in each of the two cases the TA
does give a certain “effective” trajectory position in the
appropriate variable,

(4.8)

C. Complex Regge poles

These have been shown to occur in the model by con-
sidering the forward equation in the TA* or in a fac-
torizable approximation. ! The possibility of the oc-
currence of this feature may in fact be understood guite
generally, without any approximations, by observing
the different regions of the [ plane in which the kernel
in Eq. (2.2) is square-integrable, depending on whether
m? is zero or not. In the TA to the nonforward equation,
for instance, we find that the trace [represented by the
integral in Eq. (4.1)] converges in Rel> -3/2 for a+0,
but for a=0 it converges only in Rel> - 1. This will
immediately lead to complex Regge poles to the left of
the line Rel =1 when a takes on the small values («< 1)
that we are interested in, because of the predictable
nonholomorphic behavior of the trace at a=0 for gen-
eral values of {. Indeed, it is easy to see from Eq. (4.1)
that there occurs a term proportional to a*** (plus high-
er powers of a) in the trace when t#0, if we use the fact
that the @, function has a leading behavior ~x2¥2 near
x=0, As t— 0, complex Regge poles can now occur to
the left of the line Rel =0, in agreement with the re-
sult found from the forward equation.* This is also
clear if we reduce the representation of Eq. (4.7) for
I(1, a) to the following form:

(1+R) (F(l,—l—l;-l+1;—R)

11, a)=

(1-R) 1(7+1)
RF(1,1+1;1+3;=R) 7wRY1+R)
(I+1)1+2) T sinm ) (4.9)

Since R=g + ((a®) as a— 0, the last term on the right in
Eq. (4.9) is nonholomorphic at a=0, and leads to the
complex Regge poles referred to above when we solve
the eigenvalue condition 1 —(G?/M?)I(l, a)=0 for 1. We
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do not give further details here as they can be easily
worked out.

D. Threshold behavior

The “accumulation” of Regge poles near = -3 as
t—~4m? is of course well known. Recently this phenom-
enon has been discussed!! in the context of a factoriza-
ble approximation to the ABFST equation. However, we
have already given elsewhere*? a full analysis of the
threshold behavior of the trajectories, with the original
kernel retained, in the framework of the BS equation,
Once again the phenomenon can be anticipated, even in
the TA, simply by noting that the trace in Eq. (4.1)
converges only in Rel> ~ 3 instead of Rel> -3 when ¢
is set equal to 4m?; and that a term proportional to
(t = 4m?)"** /2 emerges from the integral using the same
leading behavior of @, near x=0 as before. For the
sake of completeness, we give just the results of a sim-
ple computation of the threshold behavior in the TA:
First, the integral in Eq. (4.1) can be analytically con-
tinued to all values of ! by converting it to a contour
integral around the branch cut of the g, function on the
real positive x axis. Then, exactly at t=4m?, Regge
poles to the right of Rel=—% can be shown to be solu-
tions of the equation

1 =(G?/4m®) exp(—inl)(secT)A(]) =0, (4.10)
where
A(D) = [ dxx(® +a) ™ 12Q, (1 +1/2x%), (4.11)

C being the (clockwise) contour referred to above. The
solution to Eq. (4. 10) in the weak~coupling limit is

I+3=iG?A(- §) /ATM? = 1G? /2Mm, (4.12)

correctly reproducing the weak-coupling expression for
the leading Regge pole at threshold.®:%? Again, for ¢
very close to 4m?, we can show that the eigenvalue con-
dition of Eq. (4.1) takes the form

c(l(@m? - 1) /M2 /221, (4.13
where
C(1) =iA(= %) Mexp(- inDA(l) + (4M? /G?) cosl],
C(-1)=1.

The “accumulation” of Regge poles near I=-+ as

t —4m?* now follows in the standard manner from Egq.
(4.13). The TA thus preserves, by and large, the
threshold behavior of trajectories [although the exact
form of C(I) is a bit different from that given above].
This is not surprising, since the approximation does
not alter the “propagator” factor f(p, w, #) in the kernel
of Eq. (2.2), and it is this factor that leads to the
threshold singularity at ¢ =4m?,

E. Pomeron intercept and slope

The intercept at =0 of the leading trajectory of the
model, denoted by a4, is found in the TA by solving the
equation

I(an,a)zMz/Gz. (4. 14)

For a kernel more general than the resonance kernel we
are working with, we are to understand by (G?/M?) in
this equation the quantity R=[ dsC,(s)/s, where C,(s)
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has already been introduced in Eq. (2. 8).

The slope a of the leading trajectory at ¢=0 is given
by [see Eq. (4.2)]

ag=(1/6M") [(aii)/ (S—i)]

For a<« 1, we find that if 0<a,<1, then ¢, and a} are
given by

(4. 15)

[ay(1+ay)]? - ra*cscmay,~ R, (4. 16)
and
,. @i, +1)? fra a0t _1>
@o% 32(2a, + 1) \6 sinra, ~ [ - aodagia, +1)a, +2)]7).

(4.17)

The factor a %™ in Eq. (4.17) shows that the slope de-
pends strongly on the ratio m2/M? (m is to be identified
with the pion mass, while M is typically of the order of
1 GeV). %

Let us now consider the interesting case of the
Pomeron, with a,=1, We find that the quantity I(1, a)
can be written completely in terms of elementary func-
tions, % so that Eq. (4. 14) takes the form

R1=(1+RP[(1-R)Y*RInR+R31+R+R?)In(1 +R)-R?],
(4.18)

where we have expressed I(1, a) as a function of the
quantity R defined earlier, in Eq. (4.6). With a,=1,
Eq. (4.18) is an exact equation in the framework of the
TA. As aincreases from 0 to <, R increases monotoni~
cally from 2 to «. For a=(m,/m)?=0.018, we find
R1=0.47 and G*~ 1,2 (GeV)?; while for m=m,, M=1
(GeV), (a=0.031), we find R~ 0,46 and G*=~2,2
(GeV)2. We can also write an exact expression for the
slope a/ when a,=1, but this will not be solely in terms
of elementary functions because (2I/81) is not, even at
1=1. However, for the small values of a we are in-
terested in, we can write an expansion for a} that
reads, retaining all the necessary terms.

a}=(2/9M%) - Ina - (17 /6) + cal, (4.19)
where
¢=-2(Ina)®/3 - 17(Ina)? /9 - (185 + 67%)(Ina) /27
~17(37% +52) /81 + ((a). (4. 20)

We note the logarithmic dependence of the slope on m?,
a feature also found in some factorizable approxima-
tions. * For the case m =m, and M =1 (GeV) considered
above, we find a{=0.27 (GeV)™?. For a=(m,/m), the
term ca in Eq. (4.19) introduces an appreciable correc-
tion to the contribution of the first two terms because

of the larger value of a, and we find a§=0, 59 (GeV)2,

It is gratifying that the TA yields such reasonable val-
ues for the slope of the leading trajectory.

F. Trace approximation for the forward equation

This was first considered in Ref. 7, and subsequently
in greater detail in Ref. 14 in connection with the oc-
currence of complex Regge poles. Arguments in favor
of the approximation have also been presented in these
references. The trace concerned has been evaluated in
Ref. 14, but the resulting expression is not in a closed
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form, although the leading terms in a=m?/M? can be
found from it; it is in fact written, after some labor, as
an infinite power series in exp(-a), where cosha
=(1/2a) - 1.%% Here we want to show that some simple
manipulations put the trace in a form which can be (i)
easily compared with the corresponding expression
from the nonforward equation, (ii) evaluated in a neat
closed form, from which all the relevant information
can be read off.

The eigenvalue condition for the forward equation
(2.6) in the TA is

1-RJ{o, a)=0,

where

* 2v o+l
_ -1 -2
J(o, ) =(0+1) fo ao(v+ ) () -

It is difficult to compare this with the condition

1 - RI(1, a) =0 obtained from the TA for the nonforward
equation on setting ¢=0, if we use the original repre-
sentation of Eq. (4.3) for I(l, ). However, if we change
the variable of integration in Eq. (4.21) to

x=2v/[20+1+ (4v+1)1/?]

(4.21)

and partially integrate once, we get
xml

m. (4.22)

1
ad(o, @) =(o+1)* —f dx
(o]
This is to be compared with Eq. (4.5) for I{l, a). The
similarities and differences between the eigenvalue con-
ditions 1 -RI(x,a)=0and 1 -RJ(A, a) =0 are now quite
obvious. ¥ Evaluating J(o, a) explicitly, we find

ad(o, a) =(0 + 1) = (0 +2)" (1 +R) /(1 - R)R'F(1, 0
+2;0+3; —RY)—RF(1,0+2;0+3; -R)], (4.23)

the analog of Eq. (4.7). As before, various results can
be easily deduced from Eq. (4.23). For example, in

the weak-coupling limit, there is one pole near c=-1,
-2, ... etc., given again by a simple closed expression:

o+1=G2/m?, 0+ N=(=11G? /m2)(M? /m?)
x{sinh(N -~ 1)8/sinh6] (N= 2). (4.24)

This is the analog of Eq. (4.8) (6= ~InR as before). We
find that for N=2 and 3, Eq. (4.24) gives the correct
sums of the roots for (0+2) and (0+3) in Eq. (3.5). As
discussed in Sec. 4B, we expect this to happen in the
TA. Again, to deduce the presence of complex poles,
we first separate the term in J(0, a) that is singular at
a=0, thus:

ad(0, @) = (o + 1)t - LEE) (F(l, -0=1;-0;~R)

“(1-R) (c+1)
RF(1,0+2;0+3;=R) 11R°*1)
- {(c+2) ~ sinmo/° (4.25)

This is the counterpart of Eq. (4.9). The last term on
the right gives rise to complex poles to the left of Reo
=0 for small values of « [recall that R=a +0(a?) as
a—0]. The position of the leading pole (for which Re ¢

> 0) is given, as m? (or a) — 0, by the approximate equa-
tion oo+ 1)(0+2)= 2R, the expression used in Ref. 7.

If this pole is at 6=1, we must have R =3. A numerical
solution® of the exact forward equation gives £ 5.3 in
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this situation. The nonforward equation gives instead
the condition [see Eq. (4.16)] a,(a,+1)=R; and for a,
=1 we must have R #2. Finally, let us consider the
M?=0 limit. The exact results in this case have been
stated following Eq. (3.3). The TA of this Section yields
just one pole in the o plane, givenby 0+1=G>/m?2, It
thus gives the correct sum of roots for (o + N) to J(G?),
a behavior expected of the TA, as already explained.
We shall use all these points to evaluate, in the next
section, the results of the factorizable approximations
that have been suggested.

5. FACTORIZABLE APPROXIMATIONS

Various separable kernels have been proposed in sev-
eral recent papers as replacements for the nondegene-
rate kernels in the forward and nonforward partial-wave
integral equations of the ABFST model, in the attempt
to obtain at least approximate solutions to the problem.
Our object here is the very restricted one of examining
certain features of the trajectory structures that emerge
in these factorizable approximations, and making some
critical comments on the nature of such approximations
in the light of the general discussion we have given ear-
lier on the role of the singularity structure of the basic
kernel in the generation of trajectories. As in the other
sections of this paper, we shall be concerned only with
the trajectory functions and not with the corresponding
residues. The simpler forward equation will be taken
up first,

A. Factorizable approximations for the forward
equation

The approximations that have been proposed replace
the nondegenerate kernel 7 (u,u’) of Eq. (2.6) by a sep-
arable, rank-one kernel of the form [ f(u)g(u")]**', The
latter quantity is generally taken to match the value of
F.(u,u") at some boundary of the region 0 <u,u’ <« of
the variables «# and u’, since it is the behavior of the
kernel at such points that determines the singularity
structure.

(a) The first case we consider is the choice'*:*?
flu)=ut'?, glu)=u'/*(u+M?)", (5.1)

so that [ flu)g(u’)]*** is the limit of 7 (u,u’) as u—0; it
also correctly reproduces the u’ — « limit and has the
correct power behavior for #’ near 0. The choice
[f(u")g(u)]°*, with f and g as given above, leads (cbvi-
ously) to the same trajectory structure. The eigenvalue
condition may be written as

Ri=[(oc+1)o+2)]1F(1,2;0+3;1-a). (5.2)

Writing the ,F, function in Eq. (5.2) in terms of func-
tions of argument a yields the expected a°/(sin7g) term
that leads to complex poles, etc. These details have al-
ready been given in Ref. 11, Let us consider the eigen-
value condition of Eq. (5.2) in the weak-coupling limit.
We find that the leading pole is given by ¢+ 1=G?/m?,
agreeing with both the TA and the exact expression,
whereas the secondary poles (one near each negative
integer) are given by o+ N=(—1)""YG*/m?)(M? /m?)(M?/
m? -1)¥-2, N> 2, This agrees with the TA only for
N=2, The limit M? - 0 produces just one pole in the

o plane, given by ¢+1=G?/m?, which also agrees with
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the TA. Again, for a— 0 the leading pole is given by

R =0o(o+1) so that R =2 for 6=1, which is a bit removed
from the value R =5. 3 yielded by the numerical solution
to the exact equation. (However this last feature agrees
with the =0 limit of the TA for the nonforward equa-
tion.) We conclude that this simplest factorizable ap-

proximation is quite a reasonable one on most counts.

(b) Next, we may try to match also the large-u be-
havior of 7 (u,u’) by modifying our choice of f and g to*

flu) =glu) =Mu' 12(u + M?)2. (5.3)
The eigenvalue condition is then
R1=Ir(o+1)T(c+2)/T(20 +4)] F(2, 0+2;20+4;1 ~a).

(5.4)

The leading pole is well-described in this approxima-
tion, for the weak-coupling limit gives o+ 1=G?/m?,

and the a -0 limit gives R = I'(20 +2)/T(0)T(¢ + 1), so
that R =6 for 0=1. However the M2 =0 limit is totally
incorrect, which is not surprising because the form as-
sumed for the kernel is also an approximation to 7 (u,u’)
when M? is large compared to u,u’. Further, the sec-
ondary spectrum is also quite different from that of the
TA or the exact equation.

(c) Finally, let us consider the choice®®
flu) =glu) =ut/2(M? + 2u)1/?, (5.5)

which gives a kernel that is again a good approximation
to 7, (u,u’) for M?> u,u’, without totally altering the
M?=0 limijt. The eigenvalue condition obtained is

RAr=[2°(c+1)(c+2)F F(1,2:0+3;1 ~2a). (5.6)

As expected, in the weak-coupling limit there is one
pole near each negative integer in the o plane, given by
0+1=G*/m?, ¢+ N=(-1"YG?/m?)(M?/m?)( M2/

m2 =272, N> 2, This agrees with the results of the TA
all the way up to N=3. There is one pole near 0=-1in
the M?=0 limit, given by 0+ 1=G?/2"*'m?, which is
reasonably close to the result in the TA. As for the
leading pole as a — 0, this is given by the solution of

R =2%{0+1), orR =4 for 0=1. We therefore consider
the approximation of Eq. (5.5) a good one.

We note that none of the above approximations proper-
ly handles the boundary in which # and #’ both — «, or
at least as well as the TA does, although the choice of
case (a) is again a reasonable one in this respect.

B. Factorizable approximations for the nonforward
equation

The approximations that have been proposed here!!:!2,48
are rather straightforward extensions of those for the
forward equation. The @, function in the eigenvalue equa-
tion (2. 2) is replaced by its asymptotic form B(%, !
+1)(2z)"*! for large values of the argument z, i.e., by
the first term in the expansion of Eq. (3.2). Next, the
cross term - 2(uw’)/2£¢’ in the expression [M?+u +u’
=2 228 )/ 2Aun (1 = )1 = £2)]*/2 for z is dropped
as being negligible compared to M2, This of course re-
duces the integral equation to a one-dimensional equa-
tion, because the dependence of the kernel on ¢ and ¢’ is
now in a factorized form. The intergal equation obtained
still has a nondegenerate kernel because of the factor
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[(une’ 2 12 M2 + 4 +u’)]*1. At this stage the same factor~
ized approximations as were used in the case of the for-
ward problem may be used, namely, the replacement of
the above expression by [ f(u)g(u’)]'*!, with f and g as in
(a), (b), or (c) of Sec. 5A. Since the exponent that ap-
pears is (I+1), the net effect is also equivalent to re-
taining just the first term in the expansion of Eq. (2.4)
for @,, and then approximating 7 ,(u,«’) by one of the
above factorized forms, The resulting eigenvalue con-
dition reads

4 a [ L) g e
RA=(1+1) L dx—(%;%‘l—mz—

11. . ~ix
XF[Z, 1’l+2’1VIz(x+a—t/41V12)z]°

(5.7

Considering precisely how the sequence of approxima-
tions has run in deriving Eq. (5.7), it is not at all sur-
prising that at =0 the eigenvalue condition collapses

to just that found in Sec. 5A, with ¢ simply replaced by
1. For f and g chosen as before, we can proceed to show
that Eq. (5.7) gives a simple pole near each negative
integer in the [ plane, in the weak-~-coupling limit. Ex-
cept for the leading Regge pole, the other trajectory
functions bear little relation to either the results of the
TA or the known exact expressions. In fact the “con-
tinuity” of the above eigenvalue conditon (for I) at =0,
namely, its coinciding with the eigenvalue condition (for
0) derived from the forward equation, itself suggests
how drastic the approximation is for all but the leading
trajectory.

An improved version of the factorizable approxima-
tion for the nonforward equation has also been pro-
posed. ** The expansion of Eq. (2.4) is used for the @,
function in the kernel, and all the terms of the expan~
sion are retained. A factorized approximation is used
for #,,.(u,u’) for each value of n (just the choice of case
(a) above for the functions f and g). The Fredholm de-
nominator continues to be rather complicated, being ob-
tained as an infinite determinant, each element of which
is an (one-dimensional) integral. Even with this refine-
ment the secondary trajectory spectrum is rather se-
verely altered, there being one Regge pole near each
negative integer value of ! given (in the case M =m) by
the too-simple expression [+ N=G?/m?, As already
stressed in Ref. 12, what is in fact established by the
detailed consideration of such factorizable approxima-
tions is the validity of the TA for the problem at hand.
We agree with this conclusion.

6. CONCLUDING REMARKS

We have studied the trajectory structure of the ABFST
multiperipheral model with a resonance kernel, one of
the simplest of a class of models of considerable im-
portance in high-energy scattering, using both the for-
ward and nonforward partial-wave integral equations.
Our motivation and method of approach have already
been spelt out at length in the Introduction. We have pro-
vided some insight into the complicated problem of the
trajectory structure by analyzing the singularity struc-
ture of the relevant kernel using appropriate represen-
tations (expansions) for it. This procedure would remain
an essential step when other, more complicated, ker-
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nels are considered. We have also worked the problem
out in considerable detail in the trace or first Fredholm
approximation. That this is a good approximation has
already been hinted at in several works including some
of those dealing with factorizable approximations. An
examination of such factorizable approximation has
shown us that they suffer from shortcomings that in-
clude, and, by and large, are more extensive than,
those of the TA, We find that the TA preserves, to a
fair degree of accuracy, the singularity structures of
the relevant kernels. [For instance, in the case of the
nonforward equation, the eigenvalue condition in the TA
still involves a @, function (with its attendant singulari-
ties in I), instead of merely the first term in an expan-
sion of this function, as in the factorizable approxima-
tion—such a term may be the correct asymptotic limit
of the function for large values of the argument, but it
certainly drastically distorts the residues of the kernel
at its poles in the I plane. ] We also find that the TA
leads to good “effective” trajectory positions for the
leading and secondary poles in both the forward and non-
forward cases, and that other phenomena such as com-
plex Regge poles, threshold behavior of trajectories,
the intercept and slope of the leading trajectory, etc.
can be investigated in a close simulation of the actual
problem, and more or less exactly. The recognition of
the fact that the traces concerned can be evaluated in
convenient closed forms, as functions of the particular
quantity R (the reason for the natural occurence of which
we have explained), should also be given due considera-
tion in this connection, for it means that we have not had
to introduce further ad hoc assumptions in the middle of
our analysis,
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It is pointed out that the operation of inner plethysm may be defined in terms of the branching rules
associated with the decomposition of an irreducible representation of the general linear group into a
set of irreducible representations of the symmetric group. A variety of methods of evaluating inner
plethysms are developed and a number of results tabulated. Special emphasis is placed on those
results relevant to the embedding of crystallographic point groups in the rotation group in three
dimensions. Symmetrized squares and cubes of some of these groups are deduced and an application

to the symmetry properties of 3j symbols is given.

I. INTRODUCTION

Littlewood'? defined a new multiplication of S func-
tions which he later called the operation of plethysm
and denoted by the symbol ® . Later still he introduced
another operation on S functions which he referred to as
the operation of inner plethysm® and denoted by the
symbol ©. Inner plethysms bear the same relationship
to inner products of S functions as the original
plethysms, now known as outer plethysms, bear to outer
products of S functions.

Murnaghan,* on the other hand, defined a particular
class of inner plethysms in terms of the symmetrization
of Kronecker powers of irreducible representations of
the symmetric group. Since it was well known that outer
plethysms correspond to the symmetrized Kronecker
powers of irreducible representations of the general
linear group, he used the same symbol, ®, to denote
both inner and outer plethysms, which were distin-~
guished by the use of different symbols in the specifica-
tion of irreducible representations of the symmetric and
linear groups. This notation is adopted here.

As symmetrized powers, inner plethysms have an
important role to play in theoretical physics, since, in
particular, the problem of the reduction of a Kronecker
square into its symmetric and antisymmetric parts
occurs in many different contextsS~!! some of which in-
volve groups isomorphic with a symmetric group.
Furthermore, the symmetrized cubes are the key to an
understanding of the symmetry properties of the gen-
eralized 3j symbols appropriate to the coupling of
physical states; these correspond to basis states of
irreducible representations of a physical symmetry
group.

However, inner plethysms were first used explicitly
in the context of problems involving the reduction from
a continuous symmetry group to a finite symmetry
group.'? The particular inner plethysms discussed by
Murnaghan and whose evaluation was later reduced to a
well-defined procedure by Littlewood!® are of great use
in analyzing the physical states of the nuclear shell
model . *

Butler and Wybourne®® first pointed out explicitly that
outer plethysms may be identified with the branching
rules associated with GL(N)D GL(M). The first aim of
this paper is to stress the fact that inner plethysms may
be identified with the branching rules associated with
GL(N)D Z,,. This identification is made explicit in the
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next section in which a method of determining the alge-
braic rules® associated with the operation of inner
plethysm is outlined.

In Sec. 3 a number of rather special inner plethysms
are evaluated using a variety of techniques based pri-
marily on dimensionality arguments and the properties
of the well known Young—Yamanouchi orthogonal real-
ization of the representations of the symmetric
group.™1¢

Some of these techniques are extended in Sec. 4 to
give the evaluation of a class of plethysms associated
with the embedding of the dihedral group, D,, the
tetrahedral group, T, the octahedreal group, O, and
the icosahedral group, Y, in the three-dimensional
rotation group SO(3). The results obtained are not
new,®7 but the method used is original.

It has recently been demonstrated'” that a study of
the subgroup chain GL(N)D GL(M)> GL(M ~1) yields
some powerful techniques for the evaluation of outer
plethysms. In the same way techniques for the evalua-
tion of inner plethysms are derived in Sec. 5 by a con-
sideration of the subgroup chain GL(N)D> 2 D= __ and,
more generally, of the chain GL(N)> X, D = XZ, with
m=s +1.

Using all the techniques of Secs. 3—5, a table of inner
plethysms is drawn up which represents the first sys-
tematic enumeration of such results. It is shown that
it is a trivial matter to derive from the tables a number
of results concerning the embedding of one group in
another.

Finally an application of the results to the determina-
tion of the symmetry properties of 35 symbols is dis-
cussed and illustrated by reference to the octahedral
group.

1l. THE ALGEBRA OF INNER PLETHYSMS

Each of the irreducible representations (u) of the
symmetric group on m symbols, X, may be specified
by a partition, u, of m into p parts, so that (u)
=(Uy, Hyyo ..y i) With gy +p, +, .. + 4, =m and

My > My >...>pu,>0. The dimension, or degree, of
such a representation is denoted by f*).
If
Ff® =N 2.1)

then the matrices of the representation (1) of £, form a
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subset of the set of nonsingular NXN matrices associ-
ated with the general linear group GL(N). Thus I, is
necessarily a subgroup of GL(N) if there exists a faith-
ful representation (u) such that (2.1) is satisfied. If (1)
is not a faithful representation of =, then the relevant
subgroup is £ /K, where K‘*’ is the normal subgroup
of Z_, consisting of the set of elements of Z, mapped
onto the f*Xf* unit matrix in the representation (u). Of
course in such a case the matrices of the representation
(1) furnish a faithful representation of the factor group
Em/Km) .

For example the representation (22) of £, is not faith-
ful. The corresponding normal subgroup K @ ig the 4
group V, whilst the factor group Z,/K?® is just £,. The
representation (22) of =, then furnishes the representa-
tion (21) of =, which is faithful.

In what follows it is assumed that (u) is a faithful
representation of Z ,. In certain cases this will not be a
valid assumption and the results should then be inter-

preted in terms of properties of the factor group
z, /K
m .

An irreducible representation {v} of the general linear
group in N dimensions, GL(N), may be specified by a
partition, v, of # into p parts with p <N. The dimension
of such a representation is denoted by D,{v}.

The defining, N-dimensional, representation of GL(N)
is denoted by {1}, and the embedding of =, in GL(N) is
defined by the mapping

{1}~ (w) 2.2)

corresponding to the fact that the set of representation
matrices {1} contains the set (u). The representation
{1} of GL(N) is said to subduce in the subgroup =, the
representation (1). Under this mapping (2.2) each ir-
reducible representation {u} of GL(N) subduces a repre-
sentation of =, denoted by (1)® {v}, which is in general
reducible in accordance with the branching rule:

{vh~ (e {}=Zip,,,, ), 2.3)

where the summation is taken over all irreducible re-
presentations (A) of ©_, so that A denotes a partition of
m. The representation (1)® {1} of = is said to be an
inner plethysm and the determination of the coefficients
b,.,» corresponds to the evaulation of the inner plethysm
which is defined by (2.3).

A check on the evaluation of the plethysm (u)® {v} is
provided by the fact that the reduction procedure im-
plies, using (2.1) that (Ref. 16, p. 71)

f(u)°(u) :ngu):D}uﬁ)’ 2.4)
i.e.,
D= p,
With the definition (2.3) it follows immediately that?
(we [{} +{pH = (w1 {s} £ (W) {o}, @.5)
and

(we[{v}-{p=lwe {1 [(we {o}], 2.6)

where in (2.6) the symbol - indicates Kronecker products
of representations of GL(N) and of £, on the left-and
right-hand sides, respectively.
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The interpretation of an inner plethysm as a sym-
metrized Kronecker power is then seen by noting that
the n-fold Kronecker power of the defining representa-
tion {1} of GL(N) given by

{13 {1}-. . {1 =20 0, @.7)

where the summation is carried out over all partitions,
v, of n, subduces the n-fold Kronecker power of the
representation (1) of =, by virtue of (2.1). Hence (Ref.
16, p. 71)

(W (). (=2 (we {u}. @.8)

Just as {J} is a symmetrized power of {1}, so (1)® {1}
is a symmetrized power of ().

The remaining algebraic rules® associated with inner
plethysms may be derived by a consideration of the
subgroup chains

GL(M +N)> GL(M)®GL(N)> 2, ® 25,52,

GL(MN)D GL(M)® GL(N)> 22,8 23,021,
and

GL(N)> GLM)> 2,

where the first links of these chains are associated with
the outer products, inner products,’® and outer
plethysms,!® respectively.

Thus the complete algebra of inner plethysms may be
derived in a very trivial way from the definition
afforded by (2.3). Clearly this definition may be gen-
eralized to give a class of plethysms associated with
every group—subgroup combination. The algebra of
such plethysms may be determined by a consideration of
the appropriate subgroup chains.

il. THE EVALUATION OF INNER PLETHYSMS

Certain plethysms can be evaluated very simply using
the definitions and results of Sec. 2:e.g., a comparison
of (2.2) and (2.3) yields the trivial result

(W {1} =(u), (3.1)
while
(me {0} = (m), (3.2)

since under the mapping (2.2) the identity representation
{0} of GL(N) subduces the identity representation (m) of
=,
If v is a partition of # into p parts, with p>N=r®,
then D,,,{v} =0, and the dimensionality formula (2. 4)
implies that

(we {v}=o0.
For example
@1)® {1} =0,

since p=3>2 =f21,

(3.3)

In the previous section the emphasis was placed on the
group—subgroup reduction GL(N)D Z_; however, it is
well known that certain irreducible representations of
%, are unimodular, whilst all such representations may
be made orthogonal as in the explicit Young—Yamanouchi
realization of the representations.
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If an irreducible representation (1) of £_ is unimodu-
lar then T, may be embedded in the special linear group
SL(N) where N=f‘#)_ The branching rules appropriate
to the subgroup chain GL(N)D SL(N)> Z_ are then such
that

{17 =~ {o} — (m).

On the other hand, if the representation () is not uni-
modular then the one-dimensional representations {0}
and {17} of GL(N) must subduce distinct one-dimensional
representations of =, so that for GL(N)D T,

{1¥} =~ @m). (3.5)

To determine whether or not the matrices of a repre-
sentation (1) are unimodular it is only necessary to
examine the Young—Yamanouchi (Ref. 7, p. 221; Ref.
16, p. 38) realization of these matrices. The group
is generated by the set of transpositions (12), (23), ...,
(m - 1,m) whose matrix representations all have the
same determinant since they belong to the same class.
Consideration of the transposition (m —1,m) is therefore
sufficient to determine whether or not the matrices of a
representation (1) are unimodular. It is easy to see that
the corresponding determinant is given by

(3.4)

| D4 (m —1,m)| = (+1)m(=1)r2(=1)m = (= 1)r2 ", (3.6)

where n, and #n, are the number of standard tableaux of
shape specified by the partition ¢ having m —=1 and e in
the same row and same column, respectively, while 7,
is the number of pairs of such tableaux related by inter-
changing the positions of m ~1 and m.

The Littlewood—Richardson rule*® for evaluating the
coefficients m ,, , associated with outer products is then
such that

”2+”3:f(ullz): (3.7

where the division symbol (Ref. 20, p. 110) is defined
by the relation:

(1)/(17)=2imz, (), (3.8)

in which the summation is carried out over all partitions
xof m—2. From (3.6) and (3.7) it follows that the
matrix corresponding to every element of the group Z
in the representation (1) will be unimodular if and only
if 7#/1 ig even. With this result (3.4) and (3.5) give
the formula

s(m) if N=f® and £*/*® is even,

(we {1¥) = ) (3.9
2(1"1) if N=£® and f*/1” is odd.

For example

B1e {13} =17 and (212)2{1%}=(4)
since

(31)/(1%)=(2) and (21%)/(12)=(2) +(1%).

More generally by considering products of representa~
tions of GL(N) and making use of (2.6), (3.3), and (3.9)
it is easily shown that

(3.10)

(W {p} if v, is even or f*/17 ig even,

(“)®{V}: ~r 2
(we {p} if vy is odd and f*/*7 is o0dd,
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where f* =N, {v}={v,,v,,...,vy} and {0}

=1y, = vy, ¥y =~ Vy,...,0f, so that under GL(N)D SL(N),

{v} = {p}. For example:

e a4
(31)® {21%} = 31)® {1} = (31) = (21?),
and (3.12)

(217)® {212} = (21%)® {1} = (212).

Particular cases of (3.11) corresponding to (u) = (m)
and (u)=(1™) are of special interest. In these cases
since f™ =f "™ =1, whilst f "/ =0 and fO"/®
=793 =1 it follows from (3.3) and (3.11) that

(m) if p=1,
(m)® {v}= (3.13)
0 ifp>1,
and (m) if p=1 and n is even,
(Ime{v}=<¢(1™) if p=1 and n is odd, (3.14)

0 ifp>1,

where v is a partition of » into p parts.

These results correspond to statements about the
branching laws associated with GL(1)> = _/K‘™ and
GL(1)>z,/K*™ respectively, since the representa-
tions (m) and (1™) of =, are not faithful. In fact K‘™
=%, and K" =A_ so that (3.13) and (3.14) are asso-
ciated with GL(1)> =, and GL{1)D> Z,, respectively. It
should be stressed, however, that interpreting the re-
sults in terms of symmetrized products gives a meaning
to (3.13) and (3.14) as statements purely about the group
z

-

The last result (3.14) may be used in conjunction with
the algebraic rule (2.6) to prove an important conjugacy
theorem as follows. Since

(™)« (u) = () (3.15)
the rule (2.6) implies
(me {vt=[ame {#}- [(we {1].
Application of (3.14) then yields the theorem?®!
(W) {v} if » is even,
(Do {v}= (3.16)

A~
(L)@ {v} if 7 is odd.

This theorem is illustrated by the examples (3.10) and
(3.12).

Quite apart from the unimodularity properties of the
matrices of the representation (u), the very existence
of an orthogonal realization of these matrices is suffi-
cient to prove that Z, is a subgroup of O(N) as well as of
GL(N).

Hence?

(W@ {2} =10m) +-- (3.17)
and

(L)@ {12} =0(m) +---. (3.18)
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It is worth pointing out that the existence of the sub-
group chain GL(N)> O(N)D £ implies that it is mean-
ingful to define generalized inner plethysms of the form
(1)® [v] which are associated with the second link of
this chain. Such plethysms may be evaluated by making
use of the full chain and the algebra developed in Sec. 2.
For example:

(W [n] =(1)® {n} -{n -2}
= (W {n}~ (W)@ {n -2}

Furthermore, if there exists a unimodular repre-
sentation of Z, then it is meaningful to talk about the
subgroup chains GL(N)D SL{N)}> SO(N)D Z, and GL(N)
D O(N)D SO(N)D Z_, so that plethysms associated with
the embedding of =, in the rotation group may be
defined.

(3.19)

In the same way of course the notion of inner plethysm
may be generalized somewhat to include plethysms as-
sociated with the alternating group, A,. The relevant
subgroup chain is then GL{(N)D> £ _D A, where the last
link is associated with the branching rule?®

Ty if (p)> (1),

(1) —< 4Ty if (w) <()
4, e if (0 =(1),

(3.20)

where in general (1) ({) according as the first non-
vanishing difference u, — i,, 4, - d,, ... is positive or
negative. If all such differences vanish then (u)= ().
Brackets { } are used to denote irreducible representa-
tions of A, , and the subscripts + and - are used in the
usual way to signify the irreducible constituents of the
representation associated with a self-conjugate
partition.

The use of the associativity of the operation of
plethysm together with (3.20) and (3.9) gives

LR 18 =4m) if N=f® (3.21)
and

Ku), +{ur]® {1 =dm} if N=f* and pu=[,
so that using the algebra of plethysms

Kk ® {172} [{uk @ {17¥/2} =4m}, (3.22)

where the fact that f**»=f*»=N/2 has been used in
conjunction with (3.3).

If N=2, corresponding to the two cases {1}, =421},
and {u}, =422}, (3.22) merely implies that {21} -{21).
=43} and {22}, -{2%). ={4}. However, for N>2 a dimen-
sionality argument is sufficient to show that

L)@ {192} =4 ) @ {1773} =4m}. (3.23)

These results imply that all representations of 4
other than 421}, and 422}, are unimodular.

The results (3.17) and (3.18) may be extended some-~
what®® and used in conjunction with (3.20) to give

{3 {2 = Hmp+ -+
if p#it,
Ly {15 = 0dm}+ -

(3.24a)
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and
{uh@ {2} =1om}+--
if u=[ and 3(m - 7) is even,

{3, ® {17} = Ogm )+ - (3.24b)

but
{13, ® {2} =0m} +-- Z
if u=[ and $(m ~7) is odd.
{u1,@ {12 =0m}+ -+ S
(3.24c)

Thus the representations {u} and {4}, with 3(m —»)
even are all orthogonal and not symplectic, whilst the
representations {u}, with 3(m — 7) odd are neither
orthogonal nor symplectic. This corresponds to the fact
that the former all possess real characters and real
representation matrices and the latter some complex
characters as was first deduced by Frobenius.??

These results may also be confirmed through an
examination of the explicit representation matrices for
the alternating group A .2

IV. BRANCHING RULES ASSOCIATED WITH
THE CRYSTALLOGRAPHIC POINT GROUPS

The ease with which (3.13) and (3.14) were derived
comes about as a direct result of the fact that these
plethysms are associated with GL(N), where N=fm
=f™ =1. The value N=2 arises in the cases (u)=(21)
and (#) =(22). It is then necessary to deal with the
representations {v} of the general form {p +4q,q} so that
vy=v,=¢q. Since (21)/(12)=(1) and (22)/(12) =(12) it
follows from (3.11) that

((21)® {p} if ¢ is even,

@21)® =
{P"'q,q} ? —~——
L21)® {p} if ¢ is odd,

with an exactly similar result in which (21) in replaced
by (22).

To proceed further, it is merely necessary to note
that for representations of GL(2)

4.1)

{pr={p-1}-{1} -{p-2}- {13}, (4.2)
so that
@eVe {p=[RDe {p-1}]- 1) -[@1)e {p -2}]. 1),
(4.3)

where use has been made of (3.1) and (3.9).

Clearly (4.3) is a recurrence relation which may be
used to derive (21) ® {p} from the knowledge that
(21)® {1}=(21) and (21)® {0}=(3). The general result
obtained in this way may be written in the form
1)@ {6s +r}=(21)2{r} +s[(3) +2(21) + (1%)], (4.4a)
for»=0,1,2, ...,5ands=0,1, 2, ...,

with
@ne{o}=(3), 1e{1}=@1), @l {2}=@3)+(21),
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(21)@ {3}=(3) +(21) +(13), (21)® {4}=(3) +2(21),
21)® {5} =(3) +2(21) + (13). (4.4b)

An exactly analogous result holds for the plethysms
(2%)® {p} with (3), (21), and (1®) everywhere replaced by
(4), (22), and (1), respectively.

Making use of the results (4.4) and the identity (3.19),
it follows that:

@21)® [3s +7]=(21)® [#] with »=1, 2, 3

and s=0,1,2, ...,

(4.5a)
where
@1e [0]=(3), @V [1]=(21)® [2]=(21),
e1)® [3]=(3) +(13). (4.5b)

Exactly the same techniques may be used in the cases
for which N=7* =3, i.e., for (1) =(31) and (p)
=(212). By virtue of the conjugacy theorem (3.16) the
corresponding plethysms are related so that it is only
necessary to consider the slightly simpler of these two
cases (u)=(212). The use of (3.11) and (2.6) gives

@)@ {p+qgtr, g+r, r}=@1%)e {p+q, q},
=[(219)® {p +q}] - [212)® {q}]
-[@1)e {p+q+1}]-[@13)® (¢ -1)].

Furthermore the use of the subgroup chain

GL(3)2> S0(3)D =, allows (212)® {£} to be determined
from a knowledge of (212)® [k], which may itself be
evaluated using the well known SO(3) identity:

(4.6)

[B]l=[k-1]-[1]-[-1]=[Er-2]. 4.7
It is found that
(213)® [12s + 7]

=(212)® [r] + s[(4) +3(31) +2(2°) +3(212) + (14)]
fofr=0,1,2, ...,11ands=0,1, 2, ..., (4.82)

where now

(212)® [7] + (213)® [11 — ] = (4) + 3(31) +2(22) +3(212) + (19),
{4.8b)

with

Q1) [0]=@4), @12)® [1]=@21?), @1?)® [2]=(31)+(23),

(212)® [3]1=(31) +(213) + (19),

(217)® [4] =(4) + (31) + (2?) + (217),

(213)® [5]=(31) + (22) +2(212). (4.8c)

It is worth pointing out that further extension of the
subgroup chain to give GL(3)>S0(3)> £ DA, yields

from (3.20) and (4.8) the result
{31)® [6s + 7] =431}® [] + s[44)} + 3431} +422), +42%). ]
for »=0,1,2,...,5 and s=0,1,2, ..., (4.9a)

where

{£81)® [0]=44), {31)® [1]=431},
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£B1)® [2]={31)+427), +422).,
431)® [3] =44} +2431),
{31)® [4] =44} + 2431} +422), +422). ,

{31)® [5] = 3431} +422), +422). . (4.9b)
The enumeration of these results has been spelled out
in detail in view of their important application in con-
nection with erystallographic point groups®’ through the
well-known isomorphisms between the tetrahedral
group 7 and A, and the octahedral group O and £,. The
embeddings of T and O in the rotation group SO(3) are
defined by

{11431}
and
[1]—(212), (4.11)

respectively, and the branching rules appropriate to
SO(3)> T and SO(3)> O are given by (4.9) and 4.8),
respectively. It should be noted that the mapping

(4.10)

11— @1 (4.12)

cannot be associated with SO(3)D 3, since the represen-
tation matrices for (31) are not unimodular as can be
seen from (3.10).

To complete the story it is really necessary to ex-
amine the icosahedral group Y, which is isomorphic with
A, and the particular dihedral group D,, which is
isomorphic with Z,. Suffice it to say that the embeddings
of these groups in SO(3) are defined by the mappings

[1]—-431%, (4. 13)
and

[1]—(21) +(19), (4. 14)
respectively.

Plethysms associated with these embeddings may be
evaluated in the case of (4. 13) by using the method in-
volving (4. 7), and in the case of (4. 14) by using the
algebra of plethysms and the results (4. 4) or (4. 5). The
results take the form

{312}, ® [0]=¢5}, 431%),® [1]=431%),,
4313, @ [2]=432),  (31%),® [3]=441}+431%),,
(31%),® [4] =441} +432},

for the first few cases associated with the icosahedral
group, and quite generally for D,

[(21) + (19)]® [6s + 7] =[(21) + (1)]® [7] + 25[(3) + 2(21)

(4.15)

+(1%)] forv=0,...,5ands=0,1,2,..., (4.16a)
with
[(21) + (19)]® [7]+ [(21) + (1%)]® [5 — 7] =2[(3) + 2(21) + (1%)],
(4. 16b)
where

[(21)+(1%)]e [0]=(3), [(21)+(1%)]® [1]=(21) +(13),
[(21) + (1%)]® [2]=(3) + 2(21). (4. 16c)
The results (4. 8), (4.9), (4.15), and (4. 16) are not,
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TABLE 1. Notation adopted by Griffith,® Hamermesh,’ and
Lomont?® for the irreducible representations of the groups Dj.
T, O, and Y.

N D, Ay T

Ref. 6 7 25 Ref. 6 7 25
3 A A, I, {4y Ay A I
(21) E E T By T F I,
(1% A, Ay r, €3, o £ I,

€%, Ty

z4 [9) Ay Y

Ref. 6 7 25 Ref. 6 25
@ A Ay T £5) A I
(31 T, F, Iy “y v T,
@ E E Iy B2y vV I
21y 1y Fy Ty 213, T T,
1 A4, A, I, By 1 T,

of course, new, but it is notable that they have been ob-
tained without recourse to character tables. To make
comparison with the results of Griffith (Ref. 6, p. 389),
Hamermesh (Ref. 7, p. 339), and Lomont (Ref. 25, p.
145), it is convenient to note the variations in notation
given in Table I for the representations of the groups
D, T, O, and Y.

V. RECURRENCE TECHNIQUES FOR
EVALUATING INNER PLETHYSMS

It has been demonstrated elsewhere!” that the evalua-
tion of outer plethysms may be accomplished by a con-
sideration of the subgroup chain GL(N)> GL(M)> GL(M
—1). In the same way, for inner plethysms, considera-
tion of the branching rules associated with the subgroup
chain GL(N)> Z,> £,,_, indicates that

{th= (1)~ (w)/(1), (5.1)
and more generally
= (e v~ ln)e {P}/(D), (5.2)

where use has been made of the branching rule (Ref. 26,
p. 390 associated with £, > =, _,. Hence

[(we /(D =[r)/(D)]e {v}.

This identity is the direct generalization for inner
plethysms of the identity used by Littlewood as the basis
of his third method of calculating outer plethysms. ? The
corresponding method of evaluating inner plethysms
involves calculating the right-hand side of (5. 3) from a
knowledge of plethysms associated with Z,_,, and then
using this for the left-hand side of (5. 3) to evaluate the
plethysms associated with Z .

(5.3)

For example (5.3) implies that
(Do {12}]/(1)=[(2) + (13)]® {17} (5.4)
The use of (3.13) and (3. 14) yields for the right-hand
side
[(2)+ (13)]e {17} =(2)®@ {12} + (2)® {1} (1%)e {1}
C+H(P)e {17,

=(2)- (18)=(13), (5.5)
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so that

(D)o {12H/(1)=(1%). (5. 6)
Writing

(21)® {1}=A(3) + B(21) + C(1°), (5.7)
where A, B, C, are nonnegative integers to be deter-
mined, we then have
(D)@ {17}]/(1) =(A + B)(2) + (B + C)(1?). (5.8)
Comparison of (5.6) and (5. 8) indicates that A=B=0
and C =1 so that

(21 {1%}=(1°) (5.9)

as is implied, of course, by the more general results
(3.9).

More generally, as in Littlewood’s third method of
evaluating outer plethysms, ! ambiguities arise. For
example they arise in the evaluating of (31)® {2}. A
technique for removing such ambiguities is suggested
by a consideration of the subgroup chain GL(N)> £,
DZ,® Z,, where s+ i=m. The branching rule appro-
priate to the second link in this chain is

()= 23Meru(0), (1), (5.10)

where the summation is carried out over partitions o and
7 of s and £, respectively. This result implies, through
a consideration of the full chain that

We =[G o), 0)]o 01

under the reduction associated with Z, > Z @ Z,.

(5.11)

The right-hand side of (5.11) may be evaluated for all
s and ¢ such that s <m and ¢ <m. This information can
then be used in the evaluation of the left-hand side.
Without loss of generality it is only necessary to con-
sider the cases for which s 2{. The case s=m~1, (=1
corresponds to the use of (5. 3).

For example, under =, Z,® Z,,

(31)e {2} = [(3), (1) + (21), (D]e {2}

(5.12)
=2[(3), (D]+2[(21), (1)].

Similarly under Z,> Z,® Z,
(3D)e {21~ [(2), (2 +(2), (19 + (12), (D)) {2} (5.13)
=3[(2), ()] + [(2), (11)]+ [(13), (2)] + [(1%), (1)].
Now assuming
(31)® {2} =A(4) + B(31) + C(2?) + D(21%) + E(1%), (5.14)
then under Z,0 Z,® Z,
(31)® {2}~ (4 + B)[(3), ()] + (B + C + D)[(21), (1)]

+(D+E)(13), (D] (5.15)
while under Z,5 Z,® Z,
(3De 2} = 4+ B+ Ol@), ]+ B+DI@, (1] 5 10

+(B+D){(1%),(2)]+(C + D+ E)[(12), (1%)].

Comparison of (5.12) with (5. 15) and of (5. 13) with
(5.16) gives
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TABLE II. Plethysm coefficients, p,,,,, associated with GL(M D Z,/K™) /{v} = @) &{v}= T p,,, ().
< Puv,

w); £ “@; 1 (31); 3 (2%; 2
=N
NV e e e ay | e @ @d ay | @ ey ey @) ay
o8 o 1 1
{1} 1 1 1
{2} 1 1 1 1 1 1
{1% 1 1
3} 1 1 2 1 1 1 1
21} 1 1 1 1
{2% 1
{4} 1 2 2 2 1 1 2
{31} 2 1 "2 1 1 1
{2% 1 1 1 1 1
{21% 1
{14
{s} 1 1 4 1 2 1 2 1
{41} 1 3 2 3 1 1 1 1
{31} 1 2 1 2 1
{31% 1 1 1
{2’} 1
{21%
{1%
A+B=2, B+C+D=2, D+E=0, quantities which enables (5. 18) to be unambiguously ob-
(5.17) tained.
A+B+C=3, B+D=1, C+D+E=1, Despite the persistence of ambiguities in the general
These equations have th . Luti case the method gives a lot of results when used in
se equations have the unique solution conjunction with other properties of inner plethysms.
A=B=C=1, D=E=0, For example, the ambiguities may all be removed very
. easily in the case of plethysms (u)® {2} and (u)® {1%} by
so that in (5. 14) virtue of (3. 17) and (3. 18) which imply that A, =1 and
(31)® {2} =(4)+(31) +(2?) (5.18) A, =0, respectively. From the knowledge of these co-

in agreement with the results of Sec. 4.

It should be stressed that the use of (5.3) alone cor-
responding to the use of (5. 12) and (5. 15) leads to
ambiguities which are eliminated by the use of (5.13) and
(5. 16). However, in general all such ambiguities may
not be eliminated.

This deficiency of this method of calculating inner
plethysms using the subgroup chains GL(N)> £,0Z,® Z,
with all possible distinct pairs of numbers s and ¢ con-
sistent with the condition s + t=m is quite general.
Examination of the second link of this chain shows that
if

ZA0) = 3B ol0), (7), (5.19)

where p, 0, and T are partitions of m, s, and {, and

the coefficients B,, are known for all s and £, then the
coefficients A, may be calculated in all cases for which
(p) is not of the form (m — k&, 1¥). Furthermore, the sum
of each pair of coefficients A ,,., 1% + A, 41,1041, May
also be determined, so that a knowledge of any one such
coefficient A, _, ¢, enables the remainder to be calculat-
ed.

Thus in the case of Z, the information available gives
A2y Ay T Ay Ay A2y, and Az, +As,. In the
example quoted it is the vanishing of the last of these
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efficients all the others may be obtained.

VI. TABULATION OF RESULTS AND
APPLICATION TO THE SYMMETRY
PROPERTIES OF 3/ SYMBOLS

The main aim of this paper has been to present some
new methods for the evaluation of the coefficients
Py, in the inner plethysms

(W)® {v}=210,,,(1). (6.1)
Other methods are of course available, 3+:19:2! These
depend principally on the very important embedding of
2, in GL(m - 1) which is associated with the plethysms
(m-1,1)® {v}. Littlewood has given a formula for the

,evaluation of this class of plethysms!? and the results
have come to play an important role in the study of the
nuclear shell model. One particularly important result
is that

(m-1,1)@ (m=-%,1%) for k=0,1,...,m-1. (6.2)
This implies the existence of a subgroup chain

GL(N)> GL(m - 1)> Z,, with,

N=D, {18=Fm"1® = (m ~ 1)1 /R (m - k= 1)!. (6.3)



265 R.C. King: Branching rules for GL(N)DZ,

265

TABLE III Plethysm coefficients p,, ,, associated with GL(M D Zo/K™)/{v}— @) ®{v}= z Puv M.

W £ (5y; 1 (a1); 4 (32); 5 (31%; 6

=N
o W) (41 (32) (19 2t) (219 196 @) (32) (312 (221) (219 A9)](5) (@D (32) (313 (221) @1Y (19)](5) (41) (32) (312) (220) (21%) (19)
(0) 1 1 1 1
(1) 1 1 1 1
P) 1 11 1 11 1 1 11 2 1 1
(1%) 1 1 1 101 1
3) 1 12 1 1 12 2 1 1 1 1 2 1 5 1 2
(21) 1 1 1 1 12 2 2 1 2 3 4 3 2
1% 1 1 1 11 1 1 1 1
4@ 1 23 2 1 1 23 4 2 4 1 4 5 7 3 7 3 2
(31) 2 2 3 1 1 3 4 6 4 4 1 |16 9 10 9 8 3
2% 11 2 1 23 3 1 2 1 1135 6 3 5 2 1
219 1 1 1 1 1 3 2 2 33 3 4 4 4
14 1 1 1 1

Application of the associativity rule to this subgroup
chain then yields the identity

[(m -1, D)o {1}]e {v}=(m - 1, Do [{1¥e {+}]. (6.4)
Hence from (6. 2)
(m -k, 100 {v}=(m -1, e [{1¥}e {}]. (6.5)

This formula may be used in the evaluation of the inner
plethysm on the left by using known results for the outer
plethysm on the right, followed by the use of Little-
wood’s technique for the evaluation of plethysm of the
form (m -1, 1) {p}

Butler? has gone further by showing that any repre-
sentation (u) of Z, may be written as a sum of products
of representations of of the type (m - &, 1¥), so that using
the algebra of inner plethysms, followed by (6. 5) and
Littlewood’s theorem, any plethysm (p)® {v} may be
evaluated.

These methods have all been used to calculate
plethysms but the only tabulation of results is that of
Murnaghan? for the plethysms (m - 1. 1)@ {v} for general
m, and v a partition of » with » <6. To obtain results
for specific values of m from these tables it is neces-
sary to use the rather simple modification rules appro-

On the other hand, the methods described in this paper
lend themselves to the evaluation of the more general
plethysm (u)® {v} in which p is any partition of a
specific number m. The results obtained using the
methods of Secs. 3—5 are given in Tables II, III, and
IV in which the coefficients p,, , are tabulated for u a
partition of 4, 5, and 6, respectively.

These results give the reduction of every inner
plethysm associated with the embedding of Z,, Z,, and
T4 respectively, in GL(N) provided that the embedding
is defined in terms of a mapping of the form {1}—- ()
with (p) irreducible and faithful. Of course the con-
jugacy theorem (3. 16) is used to extend the range of the
tables.

All the results pertaining to Z, are, of course, trivial,
since the only representations (2) and (1%) are covered
by the general results (3. 13) and (3. 14). These also
cover the inner plethysms associated with the repre-
sentations (3) and (1%) of =,. The plethysms associated
with (21) are given by (4.1) and (4. 4). They may also be
obtained directly from Table II by noting that the rele-
vant subgroup chain, GL(2)> 2 /K®® = Z,, is defined by
the mapping

priate to the symmetric group (Ref. 20, p. 98). {1}—(21). (6.6)
TABLE IV. Plethysm coefficients p,, ,, associated with GL(N) D Z¢/K™/{v} — ) @{v}= Z Puya®.
* ?

W; fW=N 6); 1 (51); 5 (42); 9

W N L (e (51) (42) (419 (39 (321) (319 (29 (%1% 219 (19{(6) (51) (42) (417 (3% (321) (31%) (2% (2219 (214 1% [(6) (51) (42) (413 (3% (321) (319 (23 (24D (219 (19
(0) 1 1 1

(1) 1 1 1

(2) 1 1 1 1 11 2 1 1

(12 1 1 1 1

{3) 1 1 2 1 1 2 2 5 2 1 3 2 2 1

{21) 1 1 1 1 2 4 3 1 6 3 2 2 1

(19 1 2 1 1 2 2 1
W; fW=N (41%; 10 39); 5 (321); 16

(0) 1 1 1

(1) 1 1

(2) 1 1 2 1 1 1 1 1 1 1 1 2 3 1 1 3 1 2 1 1 1
(12 1 1 1 1 1 3 1 2 3 2 1

3) 2 2 6 2 4 4 2 1 1 1 1 2 6 10 12 6 17 12 6 10 6 2
{21) 2 4 5 2 8 4 2 4 2 1 1 1 1 9 17 18 9 32 18 9 17 9 1
(13) 11 2 1 2 2 2 2 2 1 1 1 4 7 8 4 12 8 4 i 4 1
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Interpreting inner plethysms as symmetrized products
it is then clear that under =,0 Z,

(2 {v} - (2D {v}. (6.7
However, in general
(2%)® {v}= A(4)+ B(2%)+ C(1%) (6.8)

since the nth Kronecker power of (22) only contains the
representations (4), (2%), and (1*). Decomposing these
representations in the usual way into the representations
(3), (21), and (13), it then follows from (6.7) that

(21)e {v}=A(3)+ B(21) + C(13).

Thus the plethysm (6.9) associated with (21) may be
read off from the tabulation of (6. 8) associated with (22%).

(6.9)

It should be stressed that in drawing up the tables the
well known identity (Ref. 16, p. 43, Ref. 20, p. 89)

{V} = ' {lbi-id}l ’

has been used in conjunction with (2. 5) and (2. 6) to re-
duce the amount of work involved. Thus it is only neces-
sary to calculate inner plethysms of the type (u)® {17},
from which all others may be calculated.

(6.10)

A number of interesting facts may be established very
easily from the results of the tables. For example, the
only irreducible representations of =, which define an
embedding in GL(3) are (31) and its conjugate (21%). Both
representations are orthogonal since (31)® {2} and (21?)
® {2} both contain the representation (4). However, only
(212) defines an embedding in SO(3) since (31)® {1%3}=(1*
whilst (21%)® {1®}=(4). This is sufficient to identify the
embedding of £, in SO(3) with the embedding of the point
symmetry group, O, the octahedral group, in SO(3) as
discussed in Sec. 4.

It is then easy to read off from Table II the branching
rules associated with SO(3)> 0. Adopting the notation of
Griffith® defined in Table I and making use of the fact
that a state of integral angular momentum J is defined
by [J]={J} - {7 - 2}, Table II gives
[0]-'A1,
(1]—~
(2]~ 7, +E, (6. 11)
(3]—

(4]-

[5]—T,+E+2T,,

in agreement with the tabulation of Griffith (Ref. 6, p.
389) and (4. 8).

T, +T,+A,,
A +T,+E+T,

Of course results other than those of Sec. 4 may also
be obtained from the tables. For example it is easy to
see that the symmetrized and antisymmetrized squares
of the irreducible representations of O are given by
(Ref. 6, p. 405)

A {2}=A,, A @ {12}=0,

T, {2}=A +T,+E, T,®{1*}=T,,
E g {2}=A,+E, E 9 {1?}=A4,,
T,®{2}=A,+T,+E, T,0{1%}=T,,
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A,® 2}=A,, A, {1%}=0.

Such results are important in establishing selection
rules for certain physical processes. They may also be
derived without the explicit use of the character table
for the group O by the methods of Smith and Wybourne!®
who make use of the subgroup decomposition SO(3)> Y,
and the symmetrized and antisymmetrized Kronecker
squares of representations of SO(3) to derive the cor-
responding results for Y. In the case of the group O for
example, (6.11) and (4. 15) imply that

(T,+E)® {2}=2A,+ 2T, + 2E + T,.

(6.12)

However, T,- E=T,+ T,, whilst any power of E only
contains the representations A;, A,, and E. Hence

T,®{2}=A,+T,+E and Eg {2}=A,+E

in agreement with (6. 12). Clearly the tabulation given
here provides a more direct way of obtaining these
results.

These results on symmetrized squares are also rele-
vant to the determination of the symmetry properties of
the 3j symbols.

Quite generally the physical states associated with the
representations of a symmetry group labelled by pu, v,
and A couple together in an invariant way if and only if
the product p- v+ 1 contains the identity, 1-dimensional
representation of the group which it is convenient to label
by . In general

Levex=Mn+ .- (6.13)

and M is the number of distinct couplings invariant
under the symmetry operations of the group in question.
The physical states associated with the representations
U4, v, and » may be specified by indices ¢, j, and k. With
this notation it is convenient to denote the corresponding
3j symbols®? by (u¥r)],,, where 7 is a multiplicity label
taking on the values 1,2,...,M.

If all the representations u, v, and X are distinct, the
3j symbols may be chosen so that the pairs of labels
wi, vj, and Ak may be permuted without altering the
value of the coefficients for every value of 7.

If, however, p=v#X and M =M, + M,» where

[k {2}]- A =Mn +-- (6. 14)
and

[we {1?-x=Man+--,
then (Ref. 7, p. 264)

(BB = 0,( LX) s (6.15)

where 6,=+ 1 or — 1 according as » is associated with
the set of M, symmetric couplings or the set of M2
antisymmetric couplings.

This result may be generalized in such a way that if
p=v=»xand M=M,+ 2M,, + M,s with
o Bi=Ma+ -,
pe {21} =Mym +--,
pe {13} =Mn +---,

(6.16)
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then

(BB =2 D(m (LB (6.17)
where 7 is an element of the permutation group Z, acting
on the letters ijk, and D¥r(r) is the matrix representing
this permutation. 2-32 The particular representation,

v,, is (3), (21), or (1%) according as r belongs to the set
of M, totally symmetric couplings, the set of 2M,, mixed
symmetry couplings or the set of M,s totally antisym-
metric couplings, respectively. Thus the symmetry
properties of the 3j symbols involve more than a phase
factor if and only if M,, is nonzero.? A group is said to
be a simple phase group® if for every representation u
of the group

(TITS AP GTYTATY L (6.18)

with
l&rlzzl.

Only the values ¢, =+1 and — 1 occur for the couplings
associated with M, and M,s. Clearly (6. 18) will be in-
valid and the group will not be a simple phase group if
there exists u such that M,, is nonzero since D*}(7) is a
2X 2 matrix.

Examination of Tables II, III, and IV and the results
pertaining to I, and Z; indicates that Z  is a simple
phase group if m <5. However, for m =6,

(321)® {21}= (6) +++-,

so that =, is not a simple phase group. This result has
been noted elsewhere?®3? but the connection between the
symmetry properties of 3j symbols and inner plethysms,
although hinted at, 3 has been neither explicitly stated
nor used before. Butler has independently noted this
connection. 32

Returning to the octahedral group, isomorphic with
Z,, it follows from Table II, or equivalently (6. 12),
that the only couplings (uur) with u # for which §, is
not + 1 are those denoted by (T,7,T,) and (EEA,). In
these cases §,=-1. In the same way it follows from
Table II that the couplings (uup) have the symmetry
properties of (6.18) since in all cases M,,=0. More-~
over, €,=+1 except in the case (T ,T,T,) for which ¢,
=+ 1 or ~ 1 according as the permutation 7 of (6. 18)
is even or odd. This is in agreement with the work of
Griffith (Ref. 6, p. 446, Ref, 28).

From these remarks it should be clear that the rather
obscure operation of inner plethysm has an important
role to play in understanding the properties of finite
subgroups of continuous groups and in physical
applications.
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The calculations which lead to results recently established by Glasser are simplified.

In a recent issue of the journal [J. Math. Phys. 14, 409
(1973)], Glasser published a very interesting paper deal-
ing with the possibility of evaluating exactly certain
double series. The final results are expressed by him
in terms of Riemann zeta and beta functions; they are
listed in Table I of his paper. The aim of this short
note simply lies in the two following point:

(a) An error has been committed in the evaluation of
S,; we correct it.

{(b) it is possible to simplify greatly a part of the cal-
culations, especially those which lead to the value of S5.

Let us first recall the notations used: m and » run
over all positive integers;p and ¢ run over all positive
even integers; and 2 and / run over all positive odd
integers. We wish to evaluate the following sums:
= 7, (=

m,n

S, = 25 (m? +n2)s, 1)m+n(m?2 + n2)-s,
m,n

Sy = 2 (—=1)m1(m2 +n2)s, S, = 3, (k2 +[2)s,
m,n k1

Ss = 2o (m2 +p2)s,  Sg= 2, (k2 +p2)-s,
m,p k,p

S; = 25 (m2 + k2)s
m,k

As we shall see later it is only necessary to evaluate
two of these sums since all the others will follow
through elementary arithmetical deductions. It is pos-
sible to simplify the procedure indicated by Glasser in
the following way. To evaluate S; and S; we start with
Jacobi's identities (|g| < 1):

( 1 (2r+1) (t+1) __

Z)Eq’"

OMS OM8

>
0
>
0

o« o0 o«
(—1)7+tg@re2) @) = 5 3 (—1)ymrlgm™n® _ 57 g4n?,
11 1

The reader who is not familiar with the theory of the theta
functions can verify these identities by equating in the

two members the terms of equal power in g. Put g = e,
multiply the two members by xs-1 and integrate both sides
between x = 0 and x = ©. The results announced by
Glasser are immediate. The evaluation of the other sums
can, of course, be performed through the same procedure;
but there is a simpler way. It is evident that the set of
positive integers can be split into two subsets: the set

of positive odd integers and the set of positive even
integers. Our conclusion is that one has: 25, = S; + S5
and 2S5 = S; — S5 through a simple arithmetical device.

The reader will prove without difficulties that

Sy = (2225 —1) S, + 2S,,

Sy =228 + 83,

25, = (1 —21-25) 5, — S,

Thus we have proved that all the sums S, - -- S, are
deduced linearly from S; and S;. Finally, one has the
following table (with the corrected value of S,):

Sy = &(s)a(s) — t(2s),

Sy = (1 —21-25)¢(2s) — (1 — 21-5)E(s)B(s),

sE(2s) + (1 —21-9)¢(s)B(s)],

2-5(1 — 2-5)¢(s)B(s),

S5 =13 (1 —27s + 21-2)£(s)B(s) — (1 + 2-25)¢(2s),

3 (1 — 2-9)¢(s)B(s) — (1 — 2-25)¢(2s),

Sz = 5(1 + 275 — 21-25)¢(s)B(s) —

Sy = 2-5[2-

n
-~
i

n
o
i

3(1 —2-25)¢(2s).

*Presently Professor at the National University of Zaire, Kinshasa.

Erratum: Modified Lippmann-Schwinger equations for two-body
scattering theory with long-range interactions

[J. Math. Phys. 14, 1398(1973)]
E. Prugovecki and J. Zorbas

Department of Mathematics, University of Toronto, Toronto, Canada M5S 141

(Received 19 October 1973)

The definition of D in (4.5) should read
1/2

)

On the right-hand side of the inequality (4. 8) there
should be x instead of x2. With these corrections

DXla,0)) A) = |7\1/2<1 — cos 9o log

‘x—-b
Y

A—a
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Lemma 4.1 still shows that || Z¢x, |l = const X 1,5 ]
for [a,b) © A, but it is not sufficient for establishing
boundedness for the general case when Z2 is applied
to an arbitrary element of the form (4. 6). In order to
prove boundedness in this case, improved estimates
taking into account the highly oscillatory behaviour of
the kernel of Z2, are required.
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